File size: 5,418 Bytes
b386992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import nemo_run as run

from nemo.collections import avlm


def configure_recipe(
    nodes: int = 1,
    gpus_per_node: int = 8,
    pretrain=False,
    language_model_from_pretrained=None,
    checkpoint_path=None,
    output_dir=None,
    freeze_modules=None,
):
    """Configure the recipe"""
    if pretrain:
        recipe = avlm.avlm_8b.pretrain_recipe(
            dir=output_dir,  # Path to store checkpoints
            name="avlm_pretrain",
            num_nodes=nodes,
            num_gpus_per_node=gpus_per_node,
            language_model_from_pretrained=language_model_from_pretrained,
            freeze_modules=freeze_modules,
        )
    else:
        recipe = avlm.avlm_8b.finetune_recipe(
            checkpoint_path=checkpoint_path,
            dir=output_dir,  # Path to store checkpoints
            name="avlm_finetune",
            num_nodes=nodes,
            num_gpus_per_node=gpus_per_node,
            freeze_modules=freeze_modules,
            peft_scheme="none",
        )
    recipe.trainer.max_steps = 20
    recipe.trainer.val_check_interval = 20
    return recipe


def local_executor_torchrun(nodes: int = 1, devices: int = 8) -> run.LocalExecutor:
    # pylint: disable=C0115,C0116
    # Env vars for jobs are configured here
    env_vars = {}

    executor = run.LocalExecutor(ntasks_per_node=devices, launcher="torchrun", env_vars=env_vars)

    return executor


def run_pretraining(language_model_from_pretrained=None, checkpoint_path=None, output_dir=None, freeze_modules=None):
    # pylint: disable=C0115,C0116
    recipe = configure_recipe(
        pretrain=True,
        language_model_from_pretrained=language_model_from_pretrained,
        checkpoint_path=checkpoint_path,
        output_dir=output_dir,
        freeze_modules=freeze_modules,
    )
    executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)

    run.run(recipe, executor=executor)


def run_finetuning(checkpoint_path=None, output_dir=None, freeze_modules=None):
    # pylint: disable=C0115,C0116
    recipe = configure_recipe(
        pretrain=False, checkpoint_path=checkpoint_path, output_dir=output_dir, freeze_modules=freeze_modules
    )
    executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)

    run.run(recipe, executor=executor)


# This condition is necessary for the script to be compatible with Python's multiprocessing module.
if __name__ == "__main__":

    parser = argparse.ArgumentParser(description="Script with two optional arguments.")
    parser.add_argument(
        "--training_mode",
        type=str,
        required=True,
        choices=["pretrain", "finetune"],
        help="Training mode - either 'pretrain' or 'finetune'",
    )
    parser.add_argument(
        "--language_model_from_pretrained",
        type=str,
        default=None,
        required=False,
        help="Path to pretrained language model (optional).",
    )
    parser.add_argument(
        "--checkpoint_path", type=str, default=None, required=False, help="Path to checkpoint (optional)."
    )
    parser.add_argument(
        "--output_dir", type=str, default="./outputs/checkpoints/avlm", help="Path to store checkpoints (optional)."
    )
    parser.add_argument("--unfreeze_language_model", action="store_true", help="Unfreeze language model (optional).")
    parser.add_argument("--unfreeze_vision_model", action="store_true", help="Unfreeze vision model (optional).")
    parser.add_argument("--unfreeze_audio_model", action="store_true", help="Unfreeze audio model (optional).")
    parser.add_argument(
        "--unfreeze_vision_projection", action="store_true", help="Unfreeze vision projection (optional)."
    )
    parser.add_argument(
        "--unfreeze_audio_projection", action="store_true", help="Unfreeze audio projection (optional)."
    )
    args = parser.parse_args()

    # run nemo_run
    freeze_modules = {
        "freeze_language_model": not args.unfreeze_language_model,
        "freeze_vision_model": not args.unfreeze_vision_model,
        "freeze_audio_model": not args.unfreeze_audio_model,
        "freeze_vision_projection": not args.unfreeze_vision_projection,
        "freeze_audio_projection": not args.unfreeze_audio_projection,
    }
    if args.training_mode == "pretrain":
        run_pretraining(
            language_model_from_pretrained=args.language_model_from_pretrained,
            checkpoint_path=args.checkpoint_path,
            output_dir=args.output_dir,
            freeze_modules=freeze_modules,
        )
    elif args.training_mode == "finetune":
        run_finetuning(
            checkpoint_path=args.checkpoint_path,
            output_dir=args.output_dir,
            freeze_modules=freeze_modules,
        )