File size: 31,338 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# import libraries\n",
"\n",
"import glob\n",
"import json\n",
"import librosa\n",
"import numpy as np\n",
"from omegaconf import OmegaConf, open_dict\n",
"import os\n",
"import soundfile as sf\n",
"import subprocess\n",
"import tarfile\n",
"import tqdm\n",
"import wget\n",
"\n",
"import torch\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"/home/ubuntu/respair/Tsukasa_LITE_Qanary.csv\")\n",
"\n",
"import re\n",
"\n",
"\n",
"\n",
"# Replace any sequence containing \"HAHA\" with <|🤣|>\n",
"df['text'] = df['text'].apply(lambda x: re.sub(r'\\S*HAHA\\S*', '<|🤣|>', x))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"notebookRunGroups": {
"groupValue": "1"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files with .wav: 461086\n",
"Files with .ogg: 27643\n"
]
}
],
"source": [
"import os\n",
"\n",
"def check_and_fix_extension(filepath):\n",
" \"\"\"Check if file exists, if not try .ogg extension\"\"\"\n",
" if os.path.exists(filepath):\n",
" return filepath\n",
" \n",
" if filepath.endswith('.wav'):\n",
" ogg_path = filepath.replace('.wav', '.ogg')\n",
" if os.path.exists(ogg_path):\n",
" return ogg_path\n",
" \n",
" return filepath # Return original if neither exists\n",
"\n",
"# Apply the fix to all filenames\n",
"df['filename'] = df['filename'].apply(check_and_fix_extension)\n",
"\n",
"# Show summary\n",
"wav_count = df['filename'].str.endswith('.wav').sum()\n",
"ogg_count = df['filename'].str.endswith('.ogg').sum()\n",
"print(f\"Files with .wav: {wav_count}\")\n",
"print(f\"Files with .ogg: {ogg_count}\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"notebookRunGroups": {
"groupValue": "1"
}
},
"outputs": [
{
"data": {
"text/plain": [
"(27643, 4)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['filename'].str.contains(\".ogg\")].shape"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"df[df['text'].str.contains(\"🤣\")]\n",
"df.to_csv(\"/home/ubuntu/respair/Tsukasa_LITE_Qanary.csv\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Duration column found in CSV. Using provided durations.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 488729 entries in the CSV file.\n",
"Processing entries with provided durations...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 488729/488729 [00:04<00:00, 102634.90it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Processing complete!\n",
"Successfully processed: 488729/488729 entries\n",
"Total duration: 766.35 hours\n",
"Manifest created at: /home/ubuntu/NeMo/data/tsukasa_manifest.json\n"
]
}
],
"source": [
"import os\n",
"import json\n",
"import csv\n",
"import librosa\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"from multiprocessing import Pool, cpu_count\n",
"from functools import partial\n",
"\n",
"\n",
"def get_audio_duration(audio_path):\n",
" \"\"\"Get duration of an audio file.\"\"\"\n",
" try:\n",
" duration = librosa.core.get_duration(path=audio_path)\n",
" return duration\n",
" except Exception as e:\n",
" print(f\"Error processing {audio_path}: {e}\")\n",
" return None\n",
"\n",
"\n",
"def process_row_with_duration(row, lang=\"jp\"):\n",
" \"\"\"Process a row that already has duration information.\"\"\"\n",
" metadata = {\n",
" \"audio_filepath\": row['filename'],\n",
" \"duration\": float(row['duration']),\n",
" \"text\": row['text'],\n",
" \"lang\": lang,\n",
" \"target_lang\": lang,\n",
" \"source_lang\": lang,\n",
" \"pnc\": \"False\"\n",
" }\n",
" return metadata\n",
"\n",
"\n",
"def process_row_without_duration(row, lang=\"jp\"):\n",
" \"\"\"Process a row and calculate duration.\"\"\"\n",
" audio_path = row['filename']\n",
" duration = get_audio_duration(audio_path)\n",
" \n",
" if duration is None:\n",
" return None\n",
" \n",
" metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": row['text'],\n",
" \"lang\": lang,\n",
" \"target_lang\": lang,\n",
" \"source_lang\": lang,\n",
" \"pnc\": \"False\"\n",
" }\n",
" return metadata\n",
"\n",
"\n",
"def build_manifest_from_csv(csv_path, manifest_path, lang=\"jp\", n_jobs=None):\n",
" \"\"\"\n",
" Build a manifest file from a CSV dataset.\n",
" \n",
" Args:\n",
" csv_path: Path to the CSV file containing filename and text columns\n",
" manifest_path: Path where the manifest JSON file will be saved\n",
" lang: Language code (default: \"jp\" for Japanese)\n",
" n_jobs: Number of parallel jobs for duration calculation (default: CPU count - 1)\n",
" \"\"\"\n",
" if n_jobs is None:\n",
" n_jobs = max(1, cpu_count() - 1)\n",
" \n",
" # Read the CSV file\n",
" rows = []\n",
" has_duration = False\n",
" \n",
" with open(csv_path, 'r', encoding='utf-8') as f:\n",
" reader = csv.DictReader(f)\n",
" \n",
" # Check if duration column exists\n",
" if 'duration' in reader.fieldnames:\n",
" has_duration = True\n",
" print(\"Duration column found in CSV. Using provided durations.\")\n",
" else:\n",
" print(f\"Duration column not found. Will calculate durations using {n_jobs} parallel workers.\")\n",
" \n",
" for row in reader:\n",
" rows.append(row)\n",
" \n",
" print(f\"Found {len(rows)} entries in the CSV file.\")\n",
" \n",
" # Process rows\n",
" tot_duration = 0\n",
" successful_entries = 0\n",
" \n",
" # Create/clear the manifest file\n",
" with open(manifest_path, 'w') as fout:\n",
" pass\n",
" \n",
" if has_duration:\n",
" # Process without parallel computation\n",
" print(\"Processing entries with provided durations...\")\n",
" with open(manifest_path, 'a') as fout:\n",
" for row in tqdm(rows):\n",
" metadata = process_row_with_duration(row, lang)\n",
" if metadata:\n",
" json.dump(metadata, fout)\n",
" fout.write('\\n')\n",
" tot_duration += metadata['duration']\n",
" successful_entries += 1\n",
" else:\n",
" # Process with parallel duration calculation\n",
" print(\"Calculating audio durations in parallel...\")\n",
" \n",
" # Split processing into chunks for better progress tracking\n",
" chunk_size = 100\n",
" chunks = [rows[i:i + chunk_size] for i in range(0, len(rows), chunk_size)]\n",
" \n",
" with open(manifest_path, 'a') as fout:\n",
" for chunk in tqdm(chunks, desc=\"Processing chunks\"):\n",
" # Use multiprocessing pool for duration calculation\n",
" with Pool(n_jobs) as pool:\n",
" process_func = partial(process_row_without_duration, lang=lang)\n",
" results = pool.map(process_func, chunk)\n",
" \n",
" # Write results\n",
" for metadata in results:\n",
" if metadata:\n",
" json.dump(metadata, fout)\n",
" fout.write('\\n')\n",
" tot_duration += metadata['duration']\n",
" successful_entries += 1\n",
" \n",
" print(f\"\\nProcessing complete!\")\n",
" print(f\"Successfully processed: {successful_entries}/{len(rows)} entries\")\n",
" print(f\"Total duration: {np.round(tot_duration/3600, 2)} hours\")\n",
" print(f\"Manifest created at: {manifest_path}\")\n",
" \n",
" return manifest_path, tot_duration\n",
"\n",
"\n",
"def verify_manifest(manifest_path, sample_size=5):\n",
" \"\"\"Verify the manifest by displaying a few sample entries.\"\"\"\n",
" print(f\"\\nVerifying manifest: {manifest_path}\")\n",
" print(f\"Sample entries (first {sample_size}):\")\n",
" \n",
" with open(manifest_path, 'r') as f:\n",
" for i, line in enumerate(f):\n",
" if i >= sample_size:\n",
" break\n",
" entry = json.loads(line)\n",
" print(f\"\\nEntry {i+1}:\")\n",
" print(f\" Audio: {entry['audio_filepath']}\")\n",
" print(f\" Duration: {entry['duration']:.2f}s\")\n",
" print(f\" Text: {entry['text'][:50]}{'...' if len(entry['text']) > 50 else ''}\")\n",
"\n",
"\n",
"# Example usage\n",
"if __name__ == \"__main__\":\n",
" # Example 1: Process the provided CSV file\n",
" csv_path = \"/home/ubuntu/respair/Tsukasa_LITE_Qanary.csv\"\n",
" manifest_path = \"/home/ubuntu/NeMo/data/tsukasa_manifest.json\"\n",
" \n",
" # Build the manifest\n",
" build_manifest_from_csv(\n",
" csv_path=csv_path,\n",
" manifest_path=manifest_path,\n",
" lang=\"ja\", # Japanese\n",
" n_jobs=None # Use all cores - 1\n",
" )\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"BRANCH='r2.3.0'\n",
"def wget_from_nemo(nemo_script_path, local_dir=\"scripts\"):\n",
" os.makedirs(local_dir, exist_ok=True)\n",
" script_url = f\"https://raw.githubusercontent.com/NVIDIA/NeMo/refs/heads/{BRANCH}/{nemo_script_path}\"\n",
" script_path = os.path.basename(nemo_script_path)\n",
" if not os.path.exists(f\"{local_dir}/{script_path}\"):\n",
" !wget -P {local_dir}/ {script_url}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# wget_from_nemo(\"scripts/speech_recognition/canary/build_canary_2_special_tokenizer.py\")\n",
"output_dir = \"tokenizers/spl_tokens\"\n",
"!mkdir -p {output_dir}\n",
"!python scripts/speech_recognition/canary/build_canary_2_special_tokenizer.py {output_dir}"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/bin/bash: /home/ubuntu/miniconda3/envs/respair/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n"
]
}
],
"source": [
"!sudo rm -r /home/ubuntu/NeMo/tokenizers/spl_tokens"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/bin/bash: /home/ubuntu/miniconda3/envs/respair/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n",
"--2025-08-02 15:48:13-- https://raw.githubusercontent.com/NVIDIA/NeMo/refs/heads/r2.3.0/scripts/tokenizers/process_asr_text_tokenizer.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.108.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 17146 (17K) [text/plain]\n",
"Saving to: ‘scripts/process_asr_text_tokenizer.py’\n",
"\n",
"process_asr_text_to 100%[===================>] 16.74K --.-KB/s in 0.003s \n",
"\n",
"2025-08-02 15:48:13 (6.02 MB/s) - ‘scripts/process_asr_text_tokenizer.py’ saved [17146/17146]\n",
"\n"
]
}
],
"source": [
"wget_from_nemo('scripts/tokenizers/process_asr_text_tokenizer.py')\n",
"LANG='jp'\n",
"DATA='TSUKA'\n",
"VOCAB_SIZE=1024\n",
"OUT_DIR = f\"tokenizers/{LANG}_{DATA}_{VOCAB_SIZE}\"\n",
"manifest_path = \"/home/ubuntu/NeMo/data/tsukasa_manifest.json\"\n",
"train_text_path =\"/home/ubuntu/NeMo/data/tsukasa_manifest.lst\"\n",
"with open(manifest_path, \"r\") as f:\n",
" data = [json.loads(line.strip()) for line in f.readlines()]\n",
"with open(train_text_path, \"w\") as f:\n",
" for line in data:\n",
" f.write(f\"{line['text']}\\n\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/bin/bash: /home/ubuntu/miniconda3/envs/respair/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n",
"[NeMo I 2025-08-02 15:50:45 nemo_logging:393] Processing /home/ubuntu/NeMo/data/tsukasa_manifest.lst and store at tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024\n",
"sentencepiece_trainer.cc(178) LOG(INFO) Running command: --input=/home/ubuntu/NeMo/data/tsukasa_manifest.lst --model_prefix=tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024/tokenizer --vocab_size=1024 --shuffle_input_sentence=true --hard_vocab_limit=false --model_type=bpe --character_coverage=1.0 --bos_id=-1 --eos_id=-1 --remove_extra_whitespaces=false\n",
"sentencepiece_trainer.cc(78) LOG(INFO) Starts training with : \n",
"trainer_spec {\n",
" input: /home/ubuntu/NeMo/data/tsukasa_manifest.lst\n",
" input_format: \n",
" model_prefix: tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024/tokenizer\n",
" model_type: BPE\n",
" vocab_size: 1024\n",
" self_test_sample_size: 0\n",
" character_coverage: 1\n",
" input_sentence_size: 0\n",
" shuffle_input_sentence: 1\n",
" seed_sentencepiece_size: 1000000\n",
" shrinking_factor: 0.75\n",
" max_sentence_length: 4192\n",
" num_threads: 16\n",
" num_sub_iterations: 2\n",
" max_sentencepiece_length: 16\n",
" split_by_unicode_script: 1\n",
" split_by_number: 1\n",
" split_by_whitespace: 1\n",
" split_digits: 0\n",
" pretokenization_delimiter: \n",
" treat_whitespace_as_suffix: 0\n",
" allow_whitespace_only_pieces: 0\n",
" required_chars: \n",
" byte_fallback: 0\n",
" vocabulary_output_piece_score: 1\n",
" train_extremely_large_corpus: 0\n",
" seed_sentencepieces_file: \n",
" hard_vocab_limit: 0\n",
" use_all_vocab: 0\n",
" unk_id: 0\n",
" bos_id: -1\n",
" eos_id: -1\n",
" pad_id: -1\n",
" unk_piece: <unk>\n",
" bos_piece: <s>\n",
" eos_piece: </s>\n",
" pad_piece: <pad>\n",
" unk_surface: ⁇ \n",
" enable_differential_privacy: 0\n",
" differential_privacy_noise_level: 0\n",
" differential_privacy_clipping_threshold: 0\n",
"}\n",
"normalizer_spec {\n",
" name: nmt_nfkc\n",
" add_dummy_prefix: 1\n",
" remove_extra_whitespaces: 0\n",
" escape_whitespaces: 1\n",
" normalization_rule_tsv: \n",
"}\n",
"denormalizer_spec {}\n",
"trainer_interface.cc(353) LOG(INFO) SentenceIterator is not specified. Using MultiFileSentenceIterator.\n",
"trainer_interface.cc(185) LOG(INFO) Loading corpus: /home/ubuntu/NeMo/data/tsukasa_manifest.lst\n",
"trainer_interface.cc(409) LOG(INFO) Loaded all 488729 sentences\n",
"trainer_interface.cc(425) LOG(INFO) Adding meta_piece: <unk>\n",
"trainer_interface.cc(430) LOG(INFO) Normalizing sentences...\n",
"trainer_interface.cc(539) LOG(INFO) all chars count=32921930\n",
"trainer_interface.cc(560) LOG(INFO) Alphabet size=89\n",
"trainer_interface.cc(561) LOG(INFO) Final character coverage=1\n",
"trainer_interface.cc(592) LOG(INFO) Done! preprocessed 488729 sentences.\n",
"trainer_interface.cc(598) LOG(INFO) Tokenizing input sentences with whitespace: 488729\n",
"trainer_interface.cc(609) LOG(INFO) Done! 291302\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=1034735 min_freq=1\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=271215 size=20 all=1868 active=1762 piece=ka\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=161716 size=40 all=2954 active=2848 piece=ʔte\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=83371 size=60 all=4380 active=4274 piece=▁desɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=56419 size=80 all=6100 active=5994 piece=▁ɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=39490 size=100 all=8433 active=8327 piece=▁dʑa\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=39478 min_freq=1761\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=26896 size=120 all=10127 active=2649 piece=ː,\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=21363 size=140 all=12094 active=4616 piece=ɕo\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=17930 size=160 all=14308 active=6830 piece=ː.\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=15622 size=180 all=16373 active=8895 piece=▁naɽa\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=13828 size=200 all=18200 active=10722 piece=▁ze\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=13777 min_freq=1551\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=11759 size=220 all=19976 active=2730 piece=▁ano\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=10250 size=240 all=21790 active=4544 piece=▁mitai\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=8631 size=260 all=23455 active=6209 piece=taɽi\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=7995 size=280 all=24911 active=7665 piece=▁tsɯka\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=7268 size=300 all=26692 active=9446 piece=▁sen\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=7217 min_freq=977\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=6778 size=320 all=28308 active=2910 piece=toɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=6354 size=340 all=29507 active=4109 piece=▁tsɯkɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=5983 size=360 all=30874 active=5476 piece=ː—\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=5580 size=380 all=32629 active=7231 piece=▁kakɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=5169 size=400 all=34217 active=8819 piece=▁ona\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=5142 min_freq=650\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=4900 size=420 all=35396 active=2854 piece=ɽei\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=4645 size=440 all=36976 active=4434 piece=▁kao\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=4280 size=460 all=38553 active=6011 piece=seɴ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=4053 size=480 all=39979 active=7437 piece=rɯɴ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3842 size=500 all=41237 active=8695 piece=kenai\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=3830 min_freq=492\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3611 size=520 all=42650 active=3382 piece=▁kawai\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3449 size=540 all=44120 active=4852 piece=▁toʔte\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3305 size=560 all=45261 active=5993 piece=▁hoɽa\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3170 size=580 all=46443 active=7175 piece=▁moʔte\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=3026 size=600 all=47398 active=8130 piece=▁tsɯite\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=3017 min_freq=390\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2908 size=620 all=48580 active=3527 piece=▁tsɯzɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2779 size=640 all=49765 active=4712 piece=▁baɕo\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2635 size=660 all=51134 active=6081 piece=▁kɯtɕi\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2554 size=680 all=52065 active=7012 piece=▁wakaɽi\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2444 size=700 all=53397 active=8344 piece=waɽi\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=2444 min_freq=319\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2381 size=720 all=54657 active=3818 piece=▁harɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2286 size=740 all=55443 active=4604 piece=▁ikenai\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2164 size=760 all=57108 active=6269 piece=▁hadʑimete\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2102 size=780 all=58234 active=7395 piece=gaʔte\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=2040 size=800 all=59522 active=8683 piece=▁ɕimai\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=2037 min_freq=269\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1964 size=820 all=60584 active=4013 piece=▁sɯkɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1888 size=840 all=61568 active=4997 piece=▁natsɯ\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1834 size=860 all=62710 active=6139 piece=▁totemo\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1768 size=880 all=63277 active=6706 piece=rɯi\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1703 size=900 all=64460 active=7889 piece=eta\n",
"bpe_model_trainer.cc(159) LOG(INFO) Updating active symbols. max_freq=1701 min_freq=233\n",
"bpe_model_trainer.cc(268) LOG(INFO) Added: freq=1640 size=920 all=65670 active=4333 piece=ʔkakɯ\n",
"trainer_interface.cc(687) LOG(INFO) Saving model: tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024/tokenizer.model\n",
"trainer_interface.cc(699) LOG(INFO) Saving vocabs: tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024/tokenizer.vocab\n",
"Serialized tokenizer at location : tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024\n"
]
}
],
"source": [
"\n",
"!python scripts/process_asr_text_tokenizer.py \\\n",
" --data_file={train_text_path} \\\n",
" --vocab_size={VOCAB_SIZE} \\\n",
" --data_root={OUT_DIR} \\\n",
" --tokenizer=\"spe\" \\\n",
" --spe_type=bpe \\\n",
" --spe_character_coverage=1.0 \\\n",
" --no_lower_case \\\n",
" --log"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/bin/bash: /home/ubuntu/miniconda3/envs/respair/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n",
"--2025-08-02 15:54:46-- https://raw.githubusercontent.com/NVIDIA/NeMo/refs/heads/r2.3.0/examples/asr/speech_multitask/speech_to_text_aed.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 3875 (3.8K) [text/plain]\n",
"Saving to: ‘scripts/speech_to_text_aed.py’\n",
"\n",
"speech_to_text_aed. 100%[===================>] 3.78K --.-KB/s in 0s \n",
"\n",
"2025-08-02 15:54:46 (59.9 MB/s) - ‘scripts/speech_to_text_aed.py’ saved [3875/3875]\n",
"\n",
"/bin/bash: /home/ubuntu/miniconda3/envs/respair/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n",
"--2025-08-02 15:54:47-- https://raw.githubusercontent.com/NVIDIA/NeMo/refs/heads/r2.3.0/examples/asr/conf/speech_multitask/fast-conformer_aed.yaml\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 12239 (12K) [text/plain]\n",
"Saving to: ‘config/fast-conformer_aed.yaml’\n",
"\n",
"fast-conformer_aed. 100%[===================>] 11.95K --.-KB/s in 0.001s \n",
"\n",
"2025-08-02 15:54:47 (14.3 MB/s) - ‘config/fast-conformer_aed.yaml’ saved [12239/12239]\n",
"\n"
]
}
],
"source": [
"wget_from_nemo('examples/asr/speech_multitask/speech_to_text_aed.py')\n",
"wget_from_nemo('examples/asr/conf/speech_multitask/fast-conformer_aed.yaml', 'config')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# %%bash\n",
"\n",
"# HYDRA_FULL_ERROR=1 python scripts/speech_to_text_aed.py \\\n",
"# --config-path=\"/home/ubuntu/NeMo/config\" \\\n",
"# --config-name=\"/home/ubuntu/NeMo/config/fast-conformer_aed.yaml\" \\\n",
"# name=\"canary-small\" \\\n",
"# model.prompt_format=\"canary2\" \\\n",
"# model.train_ds.manifest_filepath=\"/home/ubuntu/NeMo/data/tsukasa_manifest.json\" \\\n",
"# model.validation_ds.manifest_filepath=\"/home/ubuntu/NeMo/data/tsukasa_manifest.json\" \\\n",
"# model.test_ds.manifest_filepath=\"/home/ubuntu/NeMo/data/tsukasa_manifest.json\" \\\n",
"# model.tokenizer.langs.jp.dir=\"/home/ubuntu/NeMo/tokenizers/jp_TSUKA_1024/tokenizer_spe_bpe_v1024\" \\\n",
"# model.tokenizer.langs.spl_tokens.dir=\"/home/ubuntu/NeMo/tokenizers/spl_tokens\" \\\n",
"# spl_tokens.model_dir=\"/home/ubuntu/NeMo/tokenizers/spl_tokens\" \\\n",
"# model.encoder.n_layers=17 \\\n",
"# model.transf_decoder.config_dict.num_layers=4 \\\n",
"# model.transf_decoder.config_dict.max_sequence_length=512 \\ \n",
"# model.model_defaults.asr_enc_hidden=512 \\\n",
"# model.model_defaults.lm_dec_hidden=1024 \\\n",
"# exp_manager.exp_dir=\"canary_results\" \\\n",
"# exp_manager.resume_ignore_no_checkpoint=true \\\n",
"# trainer.max_steps=200_000 \\\n",
"# trainer.log_every_n_steps=50\n",
"\n",
"!bash /home/ubuntu/NeMo/train_qanary.sh"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train: 487507 samples (99.7%)\n",
"Val: 1222 samples (0.3%)\n"
]
}
],
"source": [
"import json\n",
"import random\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Read all entries\n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_manifest.json\", 'r') as f:\n",
" all_data = [json.loads(line) for line in f]\n",
"\n",
"# Split 90/10 for train/val (adjust ratio as needed)\n",
"train_data, val_data = train_test_split(all_data, test_size=0.0025, random_state=42)\n",
"\n",
"# Write train manifest\n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_train.json\", 'w') as f:\n",
" for entry in train_data:\n",
" json.dump(entry, f)\n",
" f.write('\\n')\n",
"\n",
"# Write validation manifest \n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_val.json\", 'w') as f:\n",
" for entry in val_data:\n",
" json.dump(entry, f)\n",
" f.write('\\n')\n",
"\n",
"print(f\"Train: {len(train_data)} samples ({len(train_data)/len(all_data)*100:.1f}%)\")\n",
"print(f\"Val: {len(val_data)} samples ({len(val_data)/len(all_data)*100:.1f}%)\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train: 794 samples (65.0%)\n",
"Val: 428 samples (35.0%)\n"
]
}
],
"source": [
"import json\n",
"import random\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Read all entries\n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_val.json\", 'r') as f:\n",
" all_data = [json.loads(line) for line in f]\n",
"\n",
"# Split 90/10 for train/val (adjust ratio as needed)\n",
"train_data, val_data = train_test_split(all_data, test_size=0.35, random_state=42)\n",
"\n",
"# Write train manifest\n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_val.json\", 'w') as f:\n",
" for entry in train_data:\n",
" json.dump(entry, f)\n",
" f.write('\\n')\n",
"\n",
"# Write validation manifest \n",
"with open(\"/home/ubuntu/NeMo/data/tsukasa_test.json\", 'w') as f:\n",
" for entry in val_data:\n",
" json.dump(entry, f)\n",
" f.write('\\n')\n",
"\n",
"print(f\"Train: {len(train_data)} samples ({len(train_data)/len(all_data)*100:.1f}%)\")\n",
"print(f\"Val: {len(val_data)} samples ({len(val_data)/len(all_data)*100:.1f}%)\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "respair",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|