File size: 18,590 Bytes
7e5c8d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# from concurrent.futures import ProcessPoolExecutor, as_completed
# import time
# from datetime import timedelta
# import pandas as pd
# import torch
# import warnings
# import logging
# import os
# import traceback
# # --- Load and filter dataframe ---
# df = pd.read_csv("/home/ubuntu/ttsar/ASR_DATA/train_large.csv")
# print('before filtering: ')
# print(df.shape)
# df = df[~df['filename'].str.contains("Sakura, Moyu")]
# print('after filtering: ')
# print(df.shape)
# total_samples = len(df)
# # --- PyTorch settings ---
# torch.set_float32_matmul_precision('high')
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# def process_batch(batch_data):
# """Process a batch of audio files"""
# batch_id, start_idx, audio_files, config_path, checkpoint_path = batch_data
# model = None # Initialize model to None for the finally block
# try:
# # Import and configure libraries within the worker process
# import torch
# import nemo.collections.asr as nemo_asr
# from omegaconf import OmegaConf, open_dict
# import warnings
# import logging
# # Suppress logs within the worker process to keep the main output clean
# logging.getLogger('nemo_logger').setLevel(logging.ERROR)
# logging.disable(logging.CRITICAL)
# warnings.filterwarnings('ignore')
# # Load model for this worker
# config = OmegaConf.load(config_path)
# with open_dict(config.cfg):
# for ds in ['train_ds', 'validation_ds', 'test_ds']:
# if ds in config.cfg:
# config.cfg[ds].defer_setup = True
# model = nemo_asr.models.EncDecMultiTaskModel(cfg=config.cfg)
# checkpoint = torch.load(checkpoint_path, map_location='cuda', weights_only=False)
# model.load_state_dict(checkpoint['state_dict'], strict=False)
# model = model.eval().cuda()
# decode_cfg = model.cfg.decoding
# decode_cfg.beam.beam_size = 4
# model.change_decoding_strategy(decode_cfg)
# # Transcribe
# start = time.time()
# hypotheses = model.transcribe(
# audio=audio_files,
# batch_size=64,
# source_lang='ja',
# target_lang='ja',
# task='asr',
# pnc='no',
# verbose=False,
# num_workers=0,
# channel_selector=0
# )
# results = [hyp.text for hyp in hypotheses]
# return batch_id, start_idx, results, len(audio_files), time.time() - start
# finally:
# # NEW: Ensure GPU memory is cleared in the worker process
# if model is not None:
# del model
# import torch
# torch.cuda.empty_cache()
# # --- Parameters ---
# chunk_size = 512 * 4
# n_workers = 4
# checkpoint_interval = 250_000
# config_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02/version_4/hparams.yaml"
# checkpoint_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02_plus/checkpoints/Higurashi_ASR_v.02_plus--step=174650.0000-epoch=8-last.ckpt"
# # --- Prepare data chunks ---
# audio_files = df['filename'].tolist()
# chunks = []
# for i in range(0, total_samples, chunk_size):
# end_idx = min(i + chunk_size, total_samples)
# chunk_files = audio_files[i:end_idx]
# chunks.append({
# 'batch_id': len(chunks),
# 'start_idx': i,
# 'files': chunk_files,
# 'config_path': config_path,
# 'checkpoint_path': checkpoint_path
# })
# print(f"Processing {total_samples:,} samples")
# print(f"Chunks: {len(chunks)} Γ ~{chunk_size} samples")
# print(f"Workers: {n_workers}")
# print(f"Checkpoint interval: every {checkpoint_interval:,} samples")
# print("-" * 50)
# # --- Initialize tracking variables ---
# all_results = {}
# failed_chunks = []
# start_time = time.time()
# samples_done = 0
# last_checkpoint = 0
# interrupted = False
# # Initialize 'text' column with a placeholder
# df['text'] = pd.NA
# # --- Main Processing Loop with Graceful Shutdown ---
# try:
# with ProcessPoolExecutor(max_workers=n_workers) as executor:
# future_to_chunk = {
# executor.submit(process_batch,
# (chunk['batch_id'], chunk['start_idx'], chunk['files'], chunk['config_path'], chunk['checkpoint_path'])): chunk
# for chunk in chunks
# }
# for future in as_completed(future_to_chunk):
# original_chunk = future_to_chunk[future]
# batch_id = original_chunk['batch_id']
# try:
# _batch_id, start_idx, results, count, batch_time = future.result()
# all_results[start_idx] = results
# samples_done += count
# end_idx = start_idx + len(results)
# if len(df.iloc[start_idx:end_idx]) == len(results):
# df.loc[start_idx:end_idx-1, 'text'] = results
# else:
# raise ValueError(f"Length mismatch: DataFrame slice vs results")
# elapsed = time.time() - start_time
# speed = samples_done / elapsed if elapsed > 0 else 0
# remaining = total_samples - samples_done
# eta = remaining / speed if speed > 0 else 0
# print(f"β Batch {batch_id}/{len(chunks)-1} done ({count} samples in {batch_time:.1f}s) | "
# f"Total: {samples_done:,}/{total_samples:,} ({100*samples_done/total_samples:.1f}%) | "
# f"Speed: {speed:.1f} samples/s | "
# f"ETA: {timedelta(seconds=int(eta))}")
# if samples_done - last_checkpoint >= checkpoint_interval or samples_done == total_samples:
# checkpoint_file = f"/home/ubuntu/ttsar/ASR_DATA/transcribed_checkpoint_{samples_done}.csv"
# df.to_csv(checkpoint_file, index=False)
# print(f" β Checkpoint saved: {checkpoint_file}")
# last_checkpoint = samples_done
# except Exception:
# failed_chunks.append(original_chunk)
# print("-" * 20 + " ERROR " + "-" * 20)
# print(f"β Batch {batch_id} FAILED. Start index: {original_chunk['start_idx']}. Files: {len(original_chunk['files'])}")
# traceback.print_exc()
# print("-" * 47)
# except KeyboardInterrupt:
# interrupted = True
# print("\n\n" + "="*50)
# print("! KEYBOARD INTERRUPT DETECTED !")
# print("Stopping workers and saving all completed progress...")
# print("The script will exit shortly.")
# print("="*50 + "\n")
# # The `with ProcessPoolExecutor` context manager will automatically
# # handle shutting down the worker processes when we exit this block.
# # --- Finalization and Reporting (this block now runs on completion OR interruption) ---
# total_time = time.time() - start_time
# print("-" * 50)
# if interrupted:
# print(f"PROCESS INTERRUPTED")
# else:
# print(f"TRANSCRIPTION COMPLETE!")
# print(f"Total time elapsed: {timedelta(seconds=int(total_time))}")
# if total_time > 0 and samples_done > 0:
# print(f"Average speed (on completed work): {samples_done/total_time:.1f} samples/second")
# # Save final result
# final_output = "/home/ubuntu/ttsar/ASR_DATA/transcribed_manifest_final.csv"
# df.to_csv(final_output, index=False)
# print(f"Final progress saved to: {final_output}")
# print("-" * 50)
# # --- Summary and Verification ---
# successful_transcriptions = df['text'].notna().sum()
# print("Final Run Summary:")
# print(f" - Successfully transcribed: {successful_transcriptions:,} samples")
# print(f" - Failed batches: {len(failed_chunks)}")
# print(f" - Total samples in failed batches: {sum(len(c['files']) for c in failed_chunks):,}")
# if failed_chunks:
# failed_files_path = "/home/ubuntu/ttsar/ASR_DATA/failed_transcription_files.txt"
# with open(failed_files_path, 'w') as f:
# for chunk in failed_chunks:
# for file_path in chunk['files']:
# f.write(f"{file_path}\n")
# print(f"\nList of files from failed batches saved to: {failed_files_path}")
# print("-" * 50)
#NOTE #NOTE
from concurrent.futures import ProcessPoolExecutor, as_completed
import time
from datetime import timedelta
import pandas as pd
import torch
import warnings
import logging
import os
import traceback
# --- LOAD CHECKPOINT ---
checkpoint_file = "/home/ubuntu/ttsar/csv_kanad/sing/cg_shani_sing.csv"
print(f"Loading checkpoint from: {checkpoint_file}")
df = pd.read_csv(checkpoint_file)
print(f"Checkpoint loaded. Shape: {df.shape}")
# Check if 'text' column exists, if not create it
if 'text' not in df.columns:
df['text'] = pd.NA
# --- FIND ALL MISSING TRANSCRIPTIONS ---
missing_mask = df['text'].isna()
missing_indices = df[missing_mask].index.tolist()
already_done = (~missing_mask).sum()
print(f"Already transcribed: {already_done:,} samples")
print(f"Missing transcriptions: {len(missing_indices):,} samples")
print("-" * 50)
if len(missing_indices) == 0:
print("All samples already transcribed!")
exit(0)
# --- PyTorch settings ---
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def process_batch(batch_data):
"""Process a batch of audio files"""
batch_id, indices, audio_files, config_path, checkpoint_path = batch_data
model = None
try:
# Import and configure libraries within the worker process
import torch
import nemo.collections.asr as nemo_asr
from omegaconf import OmegaConf, open_dict
import warnings
import logging
# Suppress logs within the worker process
logging.getLogger('nemo_logger').setLevel(logging.ERROR)
logging.disable(logging.CRITICAL)
warnings.filterwarnings('ignore')
# Load model for this worker
config = OmegaConf.load(config_path)
with open_dict(config.cfg):
for ds in ['train_ds', 'validation_ds', 'test_ds']:
if ds in config.cfg:
config.cfg[ds].defer_setup = True
model = nemo_asr.models.EncDecMultiTaskModel(cfg=config.cfg)
checkpoint = torch.load(checkpoint_path, map_location='cuda', weights_only=False)
model.load_state_dict(checkpoint['state_dict'], strict=False)
model = model.eval().cuda().bfloat16()
decode_cfg = model.cfg.decoding
decode_cfg.beam.beam_size = 1
model.change_decoding_strategy(decode_cfg)
# Transcribe
start = time.time()
try:
hypotheses = model.transcribe(
audio=audio_files,
batch_size=64,
source_lang='ja',
target_lang='ja',
task='asr',
pnc='no',
verbose=False,
num_workers=0,
channel_selector=0
)
results = [hyp.text for hyp in hypotheses]
except Exception as e:
print(f"Transcription error in batch {batch_id}: {str(e)}")
# Return empty results list on transcription failure
results = []
# Pad results with None if we got fewer results than expected
while len(results) < len(audio_files):
results.append(None)
# Count successful transcriptions
success_count = len([r for r in results if r is not None])
# Return indices and results as a tuple for pairing
return batch_id, list(zip(indices, results)), success_count, time.time() - start
finally:
if model is not None:
del model
import torch
torch.cuda.empty_cache()
# --- Parameters ---
chunk_size = 512 * 4 # 2048
n_workers = 6
checkpoint_interval = 250_000
config_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02/version_4/hparams.yaml"
checkpoint_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02_plus/checkpoints/Higurashi_ASR_v.02_plus--step=174650.0000-epoch=8-last.ckpt"
# --- Create batches from missing indices ---
chunks = []
for i in range(0, len(missing_indices), chunk_size):
batch_indices = missing_indices[i:i+chunk_size]
batch_files = df.loc[batch_indices, 'filename'].tolist()
chunks.append({
'batch_id': len(chunks),
'indices': batch_indices,
'files': batch_files,
'config_path': config_path,
'checkpoint_path': checkpoint_path
})
print(f"Total batches to process: {len(chunks)}")
print(f"Batch size: ~{chunk_size} samples")
print(f"Workers: {n_workers}")
print(f"Checkpoint interval: every {checkpoint_interval:,} samples")
print("-" * 50)
# --- Initialize tracking variables ---
all_results = {}
failed_chunks = []
failed_files_list = []
start_time = time.time()
samples_done = 0
samples_failed = 0
last_checkpoint = 0
interrupted = False
total_to_process = len(missing_indices)
# --- Main Processing Loop ---
try:
with ProcessPoolExecutor(max_workers=n_workers) as executor:
future_to_chunk = {
executor.submit(process_batch,
(chunk['batch_id'], chunk['indices'], chunk['files'],
chunk['config_path'], chunk['checkpoint_path'])): chunk
for chunk in chunks
}
for future in as_completed(future_to_chunk):
original_chunk = future_to_chunk[future]
batch_id = original_chunk['batch_id']
try:
_batch_id, index_result_pairs, success_count, batch_time = future.result()
# Update DataFrame with results
failed_in_batch = 0
for idx, result in index_result_pairs:
if result is not None:
df.loc[idx, 'text'] = result
else:
df.loc[idx, 'text'] = "[FAILED]"
failed_in_batch += 1
failed_files_list.append(df.loc[idx, 'filename'])
samples_done += success_count
samples_failed += failed_in_batch
elapsed = time.time() - start_time
speed = samples_done / elapsed if elapsed > 0 else 0
remaining = total_to_process - samples_done - samples_failed
eta = remaining / speed if speed > 0 else 0
current_total = already_done + samples_done
status = f"β Batch {batch_id}/{len(chunks)-1} done ({success_count} success"
if failed_in_batch > 0:
status += f", {failed_in_batch} failed"
status += f" in {batch_time:.1f}s)"
print(f"{status} | "
f"Processed: {samples_done:,}/{total_to_process:,} | "
f"Total: {current_total:,}/{len(df):,} ({100*current_total/len(df):.1f}%) | "
f"Speed: {speed:.1f} samples/s | "
f"ETA: {timedelta(seconds=int(eta))}")
# Save checkpoint
if samples_done - last_checkpoint >= checkpoint_interval or (samples_done + samples_failed) >= total_to_process:
checkpoint_file = f"/home/ubuntu/ttsar/ASR_DATA/transcribed_checkpoint_{current_total}.csv"
df.to_csv(checkpoint_file, index=False)
print(f" β Checkpoint saved: {checkpoint_file}")
last_checkpoint = samples_done
except Exception as e:
failed_chunks.append(original_chunk)
print("-" * 20 + " ERROR " + "-" * 20)
print(f"β Batch {batch_id} FAILED. Indices count: {len(original_chunk['indices'])}")
print(f"Error: {str(e)}")
traceback.print_exc()
print("-" * 47)
except KeyboardInterrupt:
interrupted = True
print("\n\n" + "="*50)
print("! KEYBOARD INTERRUPT DETECTED !")
print("Stopping workers and saving progress...")
print("="*50 + "\n")
# --- Finalization ---
total_time = time.time() - start_time
print("-" * 50)
if interrupted:
print(f"PROCESS INTERRUPTED")
else:
print(f"PROCESSING COMPLETE!")
print(f"Session time: {timedelta(seconds=int(total_time))}")
print(f"Samples successfully processed: {samples_done:,}")
print(f"Samples failed: {samples_failed:,}")
if total_time > 0 and samples_done > 0:
print(f"Average speed: {samples_done/total_time:.1f} samples/second")
# Save final result
final_output = "/home/ubuntu/ttsar/ASR_DATA/transcribed_manifest_final.csv"
df.to_csv(final_output, index=False)
print(f"Final output saved to: {final_output}")
print("-" * 50)
# --- Summary ---
successful_transcriptions = df['text'].notna().sum() - (df['text'] == "[FAILED]").sum()
failed_transcriptions = (df['text'] == "[FAILED]").sum()
remaining_missing = df['text'].isna().sum()
print("Summary:")
print(f" - Total dataset size: {len(df):,} samples")
print(f" - Successfully transcribed: {successful_transcriptions:,} samples")
print(f" - Failed transcriptions: {failed_transcriptions:,} samples")
print(f" - Still missing (NaN): {remaining_missing:,} samples")
print(f" - Processed this session: {samples_done:,} successful, {samples_failed:,} failed")
print(f" - Failed batches (entire batch): {len(failed_chunks)}")
# Save list of failed files
if failed_files_list:
failed_files_path = "/home/ubuntu/ttsar/ASR_DATA/failed_transcription_files.txt"
with open(failed_files_path, 'w') as f:
for file_path in failed_files_list:
f.write(f"{file_path}\n")
print(f"\nFailed files saved to: {failed_files_path}")
if failed_chunks:
failed_batches_path = "/home/ubuntu/ttsar/ASR_DATA/failed_batches.txt"
with open(failed_batches_path, 'w') as f:
for chunk in failed_chunks:
f.write(f"Batch {chunk['batch_id']}: indices {chunk['indices'][:5]}... ({len(chunk['indices'])} total)\n")
print(f"Failed batch info saved to: {failed_batches_path}")
print("-" * 50) |