File size: 41,924 Bytes
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8ddf6
ffaf0d2
 
 
 
 
1b8ddf6
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c92e76
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
bab13b0
ffaf0d2
 
 
 
bab13b0
ffaf0d2
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
6c92e76
ffaf0d2
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
bab13b0
ffaf0d2
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
1b8ddf6
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab13b0
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c92e76
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c92e76
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
import os
import json
import argparse
import random
from pathlib import Path
from datetime import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
import torchaudio
import librosa
from tqdm import tqdm
from audiotools import AudioSignal, STFTParams


from higgs_audio_tokenizer import HiggsAudioTokenizer
from quantization.distrib import broadcast_tensors, sync_buffer, is_distributed, world_size, rank
from quantization.ddp_utils import set_random_seed, is_logging_process, get_timestamp

import sys
sys.path.append('.')
from loss import L1Loss, MultiScaleSTFTLoss, MelSpectrogramLoss, GANLoss
from discriminator import Discriminator


class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
    """Cosine scheduler with linear warmup"""
    def __init__(self, optimizer, warmup_steps, total_steps, eta_min=1e-6, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.total_steps = total_steps
        self.eta_min = eta_min
        super().__init__(optimizer, last_epoch)
    
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            # Linear warmup
            warmup_factor = self.last_epoch / self.warmup_steps
            return [base_lr * warmup_factor for base_lr in self.base_lrs]
        else:
            # Cosine annealing
            progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
            cosine_factor = 0.5 * (1 + np.cos(np.pi * progress))
            return [self.eta_min + (base_lr - self.eta_min) * cosine_factor for base_lr in self.base_lrs]


class AudioDataset(Dataset):
    """Dataset for loading audio files from CSV"""
    def __init__(self, csv_path, sample_rate=24000, segment_duration=2.0, is_train=True):
        self.df = pd.read_csv(csv_path)
        self.sample_rate = sample_rate
        self.segment_duration = segment_duration
        self.segment_length = int(sample_rate * segment_duration)
        self.is_train = is_train
        
        # Filter out files that don't exist
        valid_files = []
        for idx, row in self.df.iterrows():
            if os.path.exists(row.iloc[0]):
                valid_files.append(row.iloc[0])
        self.audio_paths = valid_files
        print(f"Found {len(self.audio_paths)} valid audio files")
    
    def __len__(self):
        return len(self.audio_paths)
    
    def __getitem__(self, idx):
        audio_path = self.audio_paths[idx]
        
        try:
      
            audio, sr = librosa.load(audio_path, sr=self.sample_rate, mono=True)
            
  =
            if len(audio) > self.segment_length:
                if self.is_train:
                    start = random.randint(0, len(audio) - self.segment_length)
                else:
                    start = 0 =
                audio = audio[start:start + self.segment_length]
            else:
                # Pad if too short
                audio = np.pad(audio, (0, self.segment_length - len(audio)))
     
            audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
            
            return audio_tensor, audio_path
            
        except Exception as e:
            print(f"Error loading {audio_path}: {e}")
            # Return silence if loading fails
            return torch.zeros(1, self.segment_length), audio_path


class BosonTrainer:
    def __init__(self, args):
        self.args = args
        self.distributed = False
        
        # Check if we're in a distributed environment
        if 'WORLD_SIZE' in os.environ and int(os.environ['WORLD_SIZE']) > 1:
            self.distributed = True
            self.setup_ddp()
            self.device = torch.device(f'cuda:{args.local_rank}')
        else:
            # Single GPU mode
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            torch.cuda.set_device(0)
            set_random_seed(args.seed)
        
        # Load config
        with open(args.config, 'r') as f:
            self.config = json.load(f)
        
        # Initialize models
        self.model = self.build_model()
        self.discriminator = self.build_discriminator() if args.use_discriminator else None
        
        # Setup data loaders
        self.train_loader, self.val_loader = self.setup_data_loaders()
        
        # Setup optimizers
        self.optimizer_g = torch.optim.AdamW(
            self.model.parameters(),
            lr=args.learning_rate,
            betas=(0.5, 0.9),
            weight_decay=args.weight_decay
        )
        
        if self.discriminator is not None:
            self.optimizer_d = torch.optim.AdamW(
                self.discriminator.parameters(),
                lr=args.learning_rate * 2,  # Typically discriminator learns faster
                betas=(0.5, 0.9),
                weight_decay=args.weight_decay
            )
        
        # Initialize gradient scalers for mixed precision
        if args.use_mixed_precision:
            self.scaler_g = GradScaler()
            self.scaler_d = GradScaler() if self.discriminator is not None else None
        else:
            self.scaler_g = None
            self.scaler_d = None
        
        # Calculate total training steps
        self.total_steps = args.num_epochs * len(self.train_loader)
        
        # Setup schedulers with warmup
        self.scheduler_g = CosineWarmupScheduler(
            self.optimizer_g,
            warmup_steps=args.warmup_steps,
            total_steps=self.total_steps,
            eta_min=1e-6
        )
        
        if self.discriminator is not None:
            self.scheduler_d = CosineWarmupScheduler(
                self.optimizer_d,
                warmup_steps=args.warmup_steps,
                total_steps=self.total_steps,
                eta_min=1e-6
            )
        
        # Setup losses
        self.setup_losses()
        
        # Setup tensorboard
        if not self.distributed or rank() == 0:
            self.writer = SummaryWriter(
                log_dir=os.path.join(args.output_dir, 'logs', get_timestamp())
            )
        
        self.global_step = 0
        self.start_epoch = 0
        
        # Load checkpoint if exists
        if args.resume:
            self.load_checkpoint()
    
    def setup_ddp(self):
        """Initialize DDP"""
        if 'LOCAL_RANK' in os.environ:
            self.args.local_rank = int(os.environ['LOCAL_RANK'])
        dist.init_process_group(backend='nccl')
        torch.cuda.set_device(self.args.local_rank)
        set_random_seed(self.args.seed + rank())
    
    def build_model(self):
        """Build and wrap model with DDP if needed"""
        
        print(self.config)
        model = HiggsAudioTokenizer(
            n_filters=self.config['n_filters'],
            D=self.config['D'],
            target_bandwidths=self.config['target_bandwidths'],
            ratios=self.config['ratios'],
            sample_rate=self.config['sample_rate'],
            bins=self.config['bins'],
            n_q=self.config['n_q'],
            codebook_dim=self.config.get('codebook_dim', None),
            semantic_techer=self.config['semantic_techer'],
            device=self.device
        ).to(self.device)
        
        if self.distributed:
            # Broadcast model parameters to ensure all ranks have same initialization
            broadcast_tensors(model.parameters())
            # Wrap with DDP
            model = DDP(model, device_ids=[self.args.local_rank])
        
        return model
    
    # def build_discriminator(self):
    #     """Build discriminator with DDP if needed"""
    #     # Use sample rate from config
    #     discriminator = Discriminator(
    #         rates=[],  # No multi-rate discriminator for now
    #         periods=[2, 3, 5, 7, 11],
    #         fft_sizes=[2048, 1024, 512],
    #         sample_rate=self.config['sample_rate'],
    #     ).to(self.device)
        
    #     if self.distributed:
    #         broadcast_tensors(discriminator.parameters())
    #         discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
        
    #     return discriminator
        
    def build_discriminator(self):
     
        discriminator = Discriminator(
            rates=[],  # No multi-rate discriminator
            periods=[2, 3, 5, 7, 11],
            fft_sizes=[2048, 1024, 512],
            sample_rate=self.config['sample_rate'],  # 24000
        ).to(self.device)
        
        if self.distributed:
            broadcast_tensors(discriminator.parameters())
            discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
        
        return discriminator
    
    def setup_losses(self):

        # Basic losses
        self.l1_loss = L1Loss()
        self.stft_loss = MultiScaleSTFTLoss(
            window_lengths=[2048, 1024, 512, 256, 128],
            loss_fn=nn.L1Loss(),
            clamp_eps=1e-5,
            mag_weight=1.0,
            log_weight=1.0,
        )
        self.mel_loss = MelSpectrogramLoss(
            n_mels=[150, 80],
            window_lengths=[2048, 512],
            mel_fmin=[0.0, 0.0],
            mel_fmax=[None, None],
            clamp_eps=1e-5,
            mag_weight=1.0,
            log_weight=1.0,
        )
        
 
        if self.discriminator is not None:
            self.gan_loss = GANLoss(self.discriminator)
        
   
        self.loss_weights = {
            'rec': 1.,  # Waveform L1 loss
            'stft': 1.,  # Multi-scale STFT loss
            'mel': 45.0,  # Mel-spectrogram loss
            'commit': 0.25,  # Commitment loss
            'semantic': 1.,  # Semantic loss
            'gen': 1.,  # Generator adversarial loss
            'feat': 2.0,  # Feature matching loss
        }
    
    def setup_data_loaders(self):

        # Split data into train/val
        df = pd.read_csv(self.args.data_csv)
        n_total = len(df)
        n_train = int(n_total * 0.9)
        
        # Create temporary CSV files for train/val split
        train_csv = '/tmp/train_audio.csv'
        val_csv = '/tmp/val_audio.csv'
        
        if not self.distributed or rank() == 0:
            df[:n_train].to_csv(train_csv, index=False)
            df[n_train:].to_csv(val_csv, index=False)
        

        if self.distributed:
            dist.barrier()
        
        # Create datasets
        train_dataset = AudioDataset(
            train_csv,
            sample_rate=self.config['sample_rate'],
            segment_duration=self.args.segment_duration,
            is_train=True
        )
        
        val_dataset = AudioDataset(
            val_csv,
            sample_rate=self.config['sample_rate'],
            segment_duration=self.args.segment_duration,
            is_train=False
        )
        
        # Create samplers and loaders
        if self.distributed:
            train_sampler = DistributedSampler(train_dataset, shuffle=True)
            val_sampler = DistributedSampler(val_dataset, shuffle=False)
        else:
            train_sampler = None
            val_sampler = None
        
        train_loader = DataLoader(
            train_dataset,
            batch_size=self.args.batch_size,
            sampler=train_sampler,
            shuffle=(train_sampler is None),
            num_workers=self.args.num_workers,
            pin_memory=True,
            drop_last=True
        )
        
        val_loader = DataLoader(
            val_dataset,
            batch_size=self.args.batch_size,
            sampler=val_sampler,
            shuffle=False,
            num_workers=self.args.num_workers,
            pin_memory=True,
            drop_last=False
        )
        
        return train_loader, val_loader
    
    def is_main_process(self):
        """Check if this is the main process"""
        return not self.distributed or rank() == 0
    
    def train_epoch(self, epoch):
        """Train for one epoch"""
        self.model.train()
        if self.discriminator is not None:
            self.discriminator.train()
        
        if self.distributed:
            self.train_loader.sampler.set_epoch(epoch)
        
        total_losses = {
            'total': 0, 'rec': 0, 'stft': 0, 'mel': 0, 
            'commit': 0, 'semantic': 0, 'gen': 0, 'feat': 0, 'disc': 0
        }
        
        pbar = tqdm(self.train_loader, desc=f'Epoch {epoch}', disable=not self.is_main_process())
        
        for batch_idx, (audio, paths) in enumerate(pbar):
            audio = audio.to(self.device)
            
            # Create AudioSignal objects for loss computation
            audio_signal = AudioSignal(audio, self.config['sample_rate'])
            
            # Forward pass with random bandwidth
            bw_idx = random.randint(0, len(self.config['target_bandwidths']) - 1)
            bw = self.config['target_bandwidths'][bw_idx]
            
            # Use autocast for mixed precision
            with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
                output, commit_loss, semantic_loss, _ = self.model(audio, bw)
                recons_signal = AudioSignal(output, self.config['sample_rate'])
            

            use_discriminator = (self.discriminator is not None and 
                                self.global_step >= self.args.discriminator_start_step)
            

            if use_discriminator and self.global_step % self.args.disc_interval == 0:
                self.optimizer_d.zero_grad()
                
                with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
                    disc_loss = self.gan_loss.discriminator_loss(recons_signal, audio_signal)
                
                if self.scaler_d is not None:
                    self.scaler_d.scale(disc_loss).backward()
                    self.scaler_d.unscale_(self.optimizer_d)
                    torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
                    self.scaler_d.step(self.optimizer_d)
                    self.scaler_d.update()
                else:
                    disc_loss.backward()
                    torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
                    self.optimizer_d.step()
                
                self.scheduler_d.step()
                total_losses['disc'] += disc_loss.item()
            
            # Train generator
            losses = {}
            
            # Compute losses with autocast
            with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
                # Reconstruction losses
                losses['rec'] = self.l1_loss(recons_signal, audio_signal)
                losses['stft'] = self.stft_loss(recons_signal, audio_signal)
                losses['mel'] = self.mel_loss(recons_signal, audio_signal)
                # losses['mel'] = torch.tensor(0.0, device=self.device) # uncomment this for the first 30k steps, it's faster if you pretrain it on semantic / commit loss first
                losses['commit'] = commit_loss
                losses['semantic'] = semantic_loss
                
                # GAN losses if discriminator is active
                if use_discriminator:
                    gen_loss, feat_loss = self.gan_loss.generator_loss(recons_signal, audio_signal)
                    losses['gen'] = gen_loss
                    losses['feat'] = feat_loss
                else:
                    # Set to zero for logging purposes
                    losses['gen'] = torch.tensor(0.0, device=self.device)
                    losses['feat'] = torch.tensor(0.0, device=self.device)
                
                # Total weighted loss
                total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items() 
                               if k not in ['gen', 'feat'] or use_discriminator)
            
            # Backward pass
            self.optimizer_g.zero_grad()
            
            if self.scaler_g is not None:
                self.scaler_g.scale(total_loss).backward()
                self.scaler_g.unscale_(self.optimizer_g)
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                self.scaler_g.step(self.optimizer_g)
                self.scaler_g.update()
            else:
                total_loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                self.optimizer_g.step()
            
            self.scheduler_g.step()
            
            # Update metrics
            total_losses['total'] += total_loss.item()
            for k, v in losses.items():
                total_losses[k] += v.item()
            
            # Update progress bar
            if self.is_main_process():
                pbar.set_postfix({
                    'loss': f'{total_loss.item():.4f}',
                    'rec': f'{losses["rec"].item():.4f}',
                    'mel': f'{losses["mel"].item():.4f}',
                    'commit_loss': f'{losses["commit"].item():.4f}',
                    'semantic_loss': f'{losses["semantic"].item():.4f}',
                    'lr': f'{self.scheduler_g.get_last_lr()[0]:.9f}',
                    'disc': 'ON' if use_discriminator else 'OFF',
                    'step': self.global_step
                })
            
            # Log to tensorboard
            if self.is_main_process() and self.global_step % self.args.log_interval == 0:
                for k, v in losses.items():
                    self.writer.add_scalar(f'train/{k}_loss', v.item(), self.global_step)
                self.writer.add_scalar('train/total_loss', total_loss.item(), self.global_step)
                self.writer.add_scalar('train/lr', self.scheduler_g.get_last_lr()[0], self.global_step)
                self.writer.add_scalar('train/bandwidth', bw, self.global_step)
                self.writer.add_scalar('train/discriminator_active', float(use_discriminator), self.global_step)
                if use_discriminator:
                    self.writer.add_scalar('train/disc_loss', total_losses['disc'] / max(1, batch_idx), self.global_step)
                if self.scaler_g is not None:
                    self.writer.add_scalar('train/grad_scale', self.scaler_g.get_scale(), self.global_step)
            
            # Save checkpoint at step intervals
            if self.global_step > 0 and self.global_step % self.args.save_step_interval == 0:
                self.save_checkpoint_step(self.global_step)
                if self.is_main_process():
                    print(f"\nSaved checkpoint at step {self.global_step}")
            
            self.global_step += 1
        
        # Return average losses
        n_batches = len(self.train_loader)
        return {k: v / n_batches for k, v in total_losses.items()}
    
    @torch.no_grad()
    def validate(self, epoch):
        """Validation loop"""
        self.model.eval()
        
        total_losses = {
            'total': 0, 'rec': 0, 'stft': 0, 'mel': 0, 
            'commit': 0, 'semantic': 0
        }
        

        audio_samples = {'train': [], 'val': []}
        
        for batch_idx, (audio, paths) in enumerate(tqdm(self.val_loader, desc='Validation', disable=not self.is_main_process())):
            audio = audio.to(self.device)
            audio_signal = AudioSignal(audio, self.config['sample_rate'])
            
            # Use medium bandwidth for validation
            bw = self.config['target_bandwidths'][2]
            
            # Use autocast for validation too
            with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
                output, commit_loss, semantic_loss, _ = self.model(audio, bw)
                recons_signal = AudioSignal(output, self.config['sample_rate'])
                
                # Compute losses
                losses = {
                    'rec': self.l1_loss(recons_signal, audio_signal),
                    'stft': self.stft_loss(recons_signal, audio_signal),
                    'mel': self.mel_loss(recons_signal, audio_signal),
                    'commit': commit_loss,
                    'semantic': semantic_loss
                }
                
                total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items())
            
            total_losses['total'] += total_loss.item()
            for k, v in losses.items():
                total_losses[k] += v.item()
            
            # Collect audio samples for tensorboard (first 3 from validation)
            if self.is_main_process() and len(audio_samples['val']) < 3:
                audio_samples['val'].append({
                    'original': audio[0].cpu(),
                    'reconstructed': output[0].cpu(),
                    'path': paths[0]
                })
        
        # Get train samples for comparison
        if self.is_main_process():
            self.model.eval()
            for batch_idx, (audio, paths) in enumerate(self.train_loader):
                if len(audio_samples['train']) >= 3:
                    break
                audio = audio.to(self.device)
                bw = self.config['target_bandwidths'][2]
                with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
                    output, _, _, _ = self.model(audio, bw)
                audio_samples['train'].append({
                    'original': audio[0].cpu(),
                    'reconstructed': output[0].cpu(),
                    'path': paths[0]
                })
        
        # Log audio samples to tensorboard
        if self.is_main_process():
            for split in ['train', 'val']:
                for idx, sample in enumerate(audio_samples[split]):
                    self.writer.add_audio(
                        f'{split}/original_{idx}',
                        sample['original'],
                        epoch,
                        sample_rate=self.config['sample_rate']
                    )
                    self.writer.add_audio(
                        f'{split}/reconstructed_{idx}',
                        sample['reconstructed'],
                        epoch,
                        sample_rate=self.config['sample_rate']
                    )
        
        # Average losses
        n_batches = len(self.val_loader)
        val_metrics = {k: v / n_batches for k, v in total_losses.items()}
        
        # Log validation metrics
        if self.is_main_process():
            for key, value in val_metrics.items():
                self.writer.add_scalar(f'val/{key}_loss', value, epoch)
        
        return val_metrics
        
    def save_checkpoint(self, epoch, is_best=False):
        """Save model checkpoint (epoch-based)"""
        if not self.is_main_process():
            return
        
        model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
        
        # Get current learning rates for verification
        current_lr_g = self.scheduler_g.get_last_lr()[0]
        
        checkpoint = {
            'epoch': epoch,
            'global_step': self.global_step,
            'model_state_dict': model_state,
            'optimizer_g_state_dict': self.optimizer_g.state_dict(),
            'scheduler_g_state_dict': self.scheduler_g.state_dict(),
            'scheduler_g_last_epoch': self.scheduler_g.last_epoch,  # Explicitly save this
            'current_lr_g': current_lr_g,  # Save for verification
            'config': self.config,
            'args': self.args
        }
        
        # Save gradient scaler states if using mixed precision
        if self.scaler_g is not None:
            checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
        
        if self.discriminator is not None:
            disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
            current_lr_d = self.scheduler_d.get_last_lr()[0]
            checkpoint['discriminator_state_dict'] = disc_state
            checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
            checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
            checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
            checkpoint['current_lr_d'] = current_lr_d
            
            if self.scaler_d is not None:
                checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
        
        # Save latest checkpoint
        checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
        os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
        torch.save(checkpoint, checkpoint_path)
        
        # Save best checkpoint
        if is_best:
            best_path = os.path.join(self.args.output_dir, 'checkpoints', 'best.pth')
            torch.save(checkpoint, best_path)
        
        # Save periodic checkpoint
        if epoch % self.args.save_interval == 0:
            epoch_path = os.path.join(self.args.output_dir, 'checkpoints', f'epoch_{epoch}.pth')
            torch.save(checkpoint, epoch_path)


    def save_checkpoint_step(self, step):
        """Save model checkpoint (step-based)"""
        if not self.is_main_process():
            return
        
        # Get current epoch from training loop
        current_epoch = step // len(self.train_loader)
        
        model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
        
        # Get current learning rates for verification
        current_lr_g = self.scheduler_g.get_last_lr()[0]
        
        checkpoint = {
            'epoch': current_epoch,
            'global_step': step,
            'model_state_dict': model_state,
            'optimizer_g_state_dict': self.optimizer_g.state_dict(),
            'scheduler_g_state_dict': self.scheduler_g.state_dict(),
            'scheduler_g_last_epoch': self.scheduler_g.last_epoch,  # Explicitly save this
            'current_lr_g': current_lr_g,  # Save for verification
            'config': self.config,
            'args': self.args
        }
        
        # Save gradient scaler states if using mixed precision
        if self.scaler_g is not None:
            checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
        
        if self.discriminator is not None:
            disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
            current_lr_d = self.scheduler_d.get_last_lr()[0]
            checkpoint['discriminator_state_dict'] = disc_state
            checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
            checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
            checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
            checkpoint['current_lr_d'] = current_lr_d
            
            if self.scaler_d is not None:
                checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
        
        # Create checkpoint directory if it doesn't exist
        checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
        os.makedirs(checkpoint_dir, exist_ok=True)
        
        # Save step-based checkpoint
        step_path = os.path.join(self.args.output_dir, 'checkpoints', f'step_{step}.pth')
        torch.save(checkpoint, step_path)
        
        # Also update latest checkpoint
        latest_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
        torch.save(checkpoint, latest_path)
        
        # Keep only the last N step-based checkpoints to save disk space
        if self.args.keep_last_n_steps > 0:
            checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
            step_checkpoints = sorted([f for f in os.listdir(checkpoint_dir) if f.startswith('step_')])
            if len(step_checkpoints) > self.args.keep_last_n_steps:
                for old_checkpoint in step_checkpoints[:-self.args.keep_last_n_steps]:
                    os.remove(os.path.join(checkpoint_dir, old_checkpoint))


    def load_checkpoint(self):

        checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
        if os.path.exists(checkpoint_path):
            print(f"Loading checkpoint from {checkpoint_path}")
            checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
            

            if self.distributed:
                self.model.module.load_state_dict(checkpoint['model_state_dict'])
            else:
                self.model.load_state_dict(checkpoint['model_state_dict'])
            
            # Load optimizer state
            self.optimizer_g.load_state_dict(checkpoint['optimizer_g_state_dict'])
            
            # Load scheduler state
            self.scheduler_g.load_state_dict(checkpoint['scheduler_g_state_dict'])
            
            # Restore scheduler's last_epoch from checkpoint
            if 'scheduler_g_last_epoch' in checkpoint:
                self.scheduler_g.last_epoch = checkpoint['scheduler_g_last_epoch']
            else:
             
                self.scheduler_g.last_epoch = checkpoint['global_step']
            
            # Force scheduler to recompute its internal state
            self.scheduler_g._last_lr = self.scheduler_g.get_lr()
            
            # Load gradient scaler state if using mixed precision
            if self.scaler_g is not None and 'scaler_g_state_dict' in checkpoint:
                self.scaler_g.load_state_dict(checkpoint['scaler_g_state_dict'])
            
            # Load discriminator if present
            if self.discriminator is not None and 'discriminator_state_dict' in checkpoint:
                if self.distributed:
                    self.discriminator.module.load_state_dict(checkpoint['discriminator_state_dict'])
                else:
                    self.discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
                self.optimizer_d.load_state_dict(checkpoint['optimizer_d_state_dict'])
                self.scheduler_d.load_state_dict(checkpoint['scheduler_d_state_dict'])
                
                # Restore discriminator scheduler's last_epoch
                if 'scheduler_d_last_epoch' in checkpoint:
                    self.scheduler_d.last_epoch = checkpoint['scheduler_d_last_epoch']
                else:
                    self.scheduler_d.last_epoch = checkpoint['global_step']
                
                self.scheduler_d._last_lr = self.scheduler_d.get_lr()
                
            
                if self.scaler_d is not None and 'scaler_d_state_dict' in checkpoint:
                    self.scaler_d.load_state_dict(checkpoint['scaler_d_state_dict'])
            
            # Restore training state
            self.start_epoch = checkpoint['epoch'] + 1
            self.global_step = checkpoint['global_step']
            
            # Verify learning rate restoration
            current_lr_g = self.scheduler_g.get_last_lr()[0]
            saved_lr_g = checkpoint.get('current_lr_g', None)
            
            print(f"\n{'='*60}")
            print(f"CHECKPOINT LOADED SUCCESSFULLY")
            print(f"{'='*60}")
            print(f"Resumed from epoch: {checkpoint['epoch']}")
            print(f"Global step: {self.global_step}")
            print(f"Scheduler last_epoch: {self.scheduler_g.last_epoch}")
            print(f"Current learning rate (generator): {current_lr_g:.9f}")
            print(f"Mixed precision: {'ENABLED' if self.args.use_mixed_precision else 'DISABLED'}")
            if saved_lr_g is not None:
                print(f"Saved learning rate (generator): {saved_lr_g:.9f}")
                if abs(current_lr_g - saved_lr_g) > 1e-9:
                    print("⚠️  WARNING: Learning rate mismatch! This might indicate improper state restoration.")
            
            if self.discriminator is not None:
                current_lr_d = self.scheduler_d.get_last_lr()[0]
                saved_lr_d = checkpoint.get('current_lr_d', None)
                print(f"Current learning rate (discriminator): {current_lr_d:.9f}")
                if saved_lr_d is not None:
                    print(f"Saved learning rate (discriminator): {saved_lr_d:.9f}")
                print(f"Discriminator status: {'ACTIVE' if self.global_step >= self.args.discriminator_start_step else f'INACTIVE (starts at step {self.args.discriminator_start_step})'}")
            
            print(f"Next epoch: {self.start_epoch}")
            print(f"Next step checkpoint at: step {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
            print(f"{'='*60}\n")
            
  g
            if self.global_step > 0:
                temp_scheduler = CosineWarmupScheduler(
                    self.optimizer_g, 
                    self.args.warmup_steps, 
                    self.total_steps,
                    eta_min=1e-6,
                    last_epoch=-1
                )
                # Step it to the current global step
                for _ in range(self.global_step):
                    temp_scheduler.step()
                expected_lr = temp_scheduler.get_last_lr()[0]
                if abs(current_lr_g - expected_lr) > 1e-9:
                    print(f"⚠️  Learning rate verification failed!")
                    print(f"   Expected: {expected_lr:.9f}")
                    print(f"   Got: {current_lr_g:.9f}")
                    print("   The scheduler state might not be properly restored.")
        else:
            print(f"No checkpoint found at {checkpoint_path}, starting from scratch")
        
    def train(self):
        """Main training loop"""
        best_val_loss = float('inf')
        
        # Print training configuration
        if self.is_main_process():
            print(f"\n{'='*50}")
            print(f"Training Configuration:")
            print(f"{'='*50}")
            print(f"Total epochs: {self.args.num_epochs}")
            print(f"Steps per epoch: {len(self.train_loader)}")
            print(f"Total steps: {self.total_steps}")
            print(f"Warmup steps: {self.args.warmup_steps}")
            print(f"Mixed precision training: {'ENABLED (bfloat16)' if self.args.use_mixed_precision else 'DISABLED'}")
            print(f"Discriminator starts at step: {self.args.discriminator_start_step}")
            print(f"Checkpoint saving:")
            print(f"  - Every {self.args.save_interval} epochs")
            print(f"  - Every {self.args.save_step_interval} steps")
            print(f"  - Keep last {self.args.keep_last_n_steps} step checkpoints")
            if self.start_epoch > 0:
                print(f"RESUMING from epoch {self.start_epoch}, step {self.global_step}")
            print(f"{'='*50}\n")
        
        for epoch in range(self.start_epoch, self.args.num_epochs):
            # IMPORTANT: Set the epoch for distributed sampler when resuming
            # This ensures proper data shuffling across epochs
            if self.distributed and hasattr(self.train_loader.sampler, 'set_epoch'):
                self.train_loader.sampler.set_epoch(epoch)
            
            # Train
            train_metrics = self.train_epoch(epoch)
            
            # Validate
            val_metrics = self.validate(epoch)
            
            # Log epoch metrics
            if self.is_main_process():
                print(f"\nEpoch {epoch} Summary:")
                print(f"Train - Total: {train_metrics['total']:.4f}, Rec: {train_metrics['rec']:.4f}, "
                    f"STFT: {train_metrics['stft']:.4f}, Mel: {train_metrics['mel']:.4f}, "
                    f"Commit: {train_metrics['commit']:.4f}, Semantic: {train_metrics['semantic']:.4f}")
                if self.discriminator is not None:
                    print(f"       Gen: {train_metrics['gen']:.4f}, Feat: {train_metrics['feat']:.4f}, "
                        f"Disc: {train_metrics['disc']:.4f}")
                    print(f"       Discriminator Status: {'Active' if self.global_step >= self.args.discriminator_start_step else f'Starting at step {self.args.discriminator_start_step}'}")
                print(f"Val   - Total: {val_metrics['total']:.4f}, Rec: {val_metrics['rec']:.4f}, "
                    f"STFT: {val_metrics['stft']:.4f}, Mel: {val_metrics['mel']:.4f}, "
                    f"Commit: {val_metrics['commit']:.4f}, Semantic: {val_metrics['semantic']:.4f}")
                print(f"Current Step: {self.global_step}, Next step checkpoint at: {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
                print(f"Current LR: {self.scheduler_g.get_last_lr()[0]:.9f}")
            
            # Save checkpoint
            is_best = val_metrics['total'] < best_val_loss
            if is_best:
                best_val_loss = val_metrics['total']
            self.save_checkpoint(epoch, is_best)
        
        # Save final model
        if self.is_main_process():
            model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
            
            final_path = os.path.join(self.args.output_dir, 'checkpoints', 'final.pth')
            torch.save({
                'model_state_dict': model_state,
                'config': self.config
            }, final_path)
            
            # Also save just the model weights in the format expected by the original code
            model_only_path = os.path.join(self.args.output_dir, 'model.pth')
            torch.save(model_state, model_only_path)
            
            # Copy config
            import shutil
            shutil.copy(self.args.config, os.path.join(self.args.output_dir, 'config.json'))
        
        # Cleanup
        if self.is_main_process():
            self.writer.close()
        if self.distributed:
            dist.destroy_process_group()


def main():
    parser = argparse.ArgumentParser(description='Train Boson Audio Codec')
    
    # Data arguments
    parser.add_argument('--data_csv', type=str, required=True,
                        help='Path to CSV file containing audio file paths')
    parser.add_argument('--config', type=str, default='config.json',
                        help='Path to config JSON file')
    
    # Training arguments
    parser.add_argument('--batch_size', type=int, default=28,
                        help='Batch size per GPU')
    parser.add_argument('--num_epochs', type=int, default=100,
                        help='Number of training epochs')
    parser.add_argument('--learning_rate', type=float, default=1e-4,
                        help='Initial learning rate')
    parser.add_argument('--weight_decay', type=float, default=0.01,
                        help='Weight decay')
    parser.add_argument('--segment_duration', type=float, default=2.,
                        help='Audio segment duration in seconds')
    
    # Mixed precision training
    parser.add_argument('--use_mixed_precision', action='store_true',
                        help='Use bfloat16 mixed precision training')
    
    # Scheduler arguments
    parser.add_argument('--warmup_steps', type=int, default=5000,
                        help='Number of warmup steps for cosine scheduler')
    
    # Loss arguments
    parser.add_argument('--use_discriminator', action='store_true',
                        help='Use adversarial training with discriminator')
    parser.add_argument('--discriminator_start_step', type=int, default=30_000,
                        help='Start training discriminator after N steps')
    parser.add_argument('--disc_interval', type=int, default=1,
                        help='Train discriminator every N steps')
    
    # System arguments
    parser.add_argument('--output_dir', type=str, default='outputs_mp_cqt',
                        help='Output directory for checkpoints and logs')
    parser.add_argument('--num_workers', type=int, default=16,
                        help='Number of data loading workers')
    parser.add_argument('--seed', type=int, default=42,
                        help='Random seed')
    parser.add_argument('--local_rank', type=int, default=0,
                        help='Local rank for distributed training')
    
    # Logging arguments
    parser.add_argument('--log_interval', type=int, default=10,
                        help='Log every N steps')
    parser.add_argument('--save_interval', type=int, default=1,
                        help='Save checkpoint every N epochs')
    parser.add_argument('--save_step_interval', type=int, default=1000,
                        help='Save checkpoint every N steps')
    parser.add_argument('--keep_last_n_steps', type=int, default=5,
                        help='Keep only the last N step-based checkpoints (0 to keep all)')
    
    # Resume training
    parser.add_argument('--resume', action='store_true',
                        help='Resume training from latest checkpoint') # NOTE: you gotta change your desired checkpoint's name to latest.pth
    
    args = parser.parse_args()
    
    # Create output directory
    os.makedirs(args.output_dir, exist_ok=True)
    
    # Train
    trainer = BosonTrainer(args)
    trainer.train()


if __name__ == '__main__':
    torch.set_float32_matmul_precision('high')
    main()