File size: 41,924 Bytes
ffaf0d2 1b8ddf6 ffaf0d2 1b8ddf6 ffaf0d2 6c92e76 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 6c92e76 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 1b8ddf6 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 bab13b0 ffaf0d2 6c92e76 ffaf0d2 6c92e76 ffaf0d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
import os
import json
import argparse
import random
from pathlib import Path
from datetime import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
import torchaudio
import librosa
from tqdm import tqdm
from audiotools import AudioSignal, STFTParams
from higgs_audio_tokenizer import HiggsAudioTokenizer
from quantization.distrib import broadcast_tensors, sync_buffer, is_distributed, world_size, rank
from quantization.ddp_utils import set_random_seed, is_logging_process, get_timestamp
import sys
sys.path.append('.')
from loss import L1Loss, MultiScaleSTFTLoss, MelSpectrogramLoss, GANLoss
from discriminator import Discriminator
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
"""Cosine scheduler with linear warmup"""
def __init__(self, optimizer, warmup_steps, total_steps, eta_min=1e-6, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_steps:
# Linear warmup
warmup_factor = self.last_epoch / self.warmup_steps
return [base_lr * warmup_factor for base_lr in self.base_lrs]
else:
# Cosine annealing
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_factor = 0.5 * (1 + np.cos(np.pi * progress))
return [self.eta_min + (base_lr - self.eta_min) * cosine_factor for base_lr in self.base_lrs]
class AudioDataset(Dataset):
"""Dataset for loading audio files from CSV"""
def __init__(self, csv_path, sample_rate=24000, segment_duration=2.0, is_train=True):
self.df = pd.read_csv(csv_path)
self.sample_rate = sample_rate
self.segment_duration = segment_duration
self.segment_length = int(sample_rate * segment_duration)
self.is_train = is_train
# Filter out files that don't exist
valid_files = []
for idx, row in self.df.iterrows():
if os.path.exists(row.iloc[0]):
valid_files.append(row.iloc[0])
self.audio_paths = valid_files
print(f"Found {len(self.audio_paths)} valid audio files")
def __len__(self):
return len(self.audio_paths)
def __getitem__(self, idx):
audio_path = self.audio_paths[idx]
try:
audio, sr = librosa.load(audio_path, sr=self.sample_rate, mono=True)
=
if len(audio) > self.segment_length:
if self.is_train:
start = random.randint(0, len(audio) - self.segment_length)
else:
start = 0 =
audio = audio[start:start + self.segment_length]
else:
# Pad if too short
audio = np.pad(audio, (0, self.segment_length - len(audio)))
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
return audio_tensor, audio_path
except Exception as e:
print(f"Error loading {audio_path}: {e}")
# Return silence if loading fails
return torch.zeros(1, self.segment_length), audio_path
class BosonTrainer:
def __init__(self, args):
self.args = args
self.distributed = False
# Check if we're in a distributed environment
if 'WORLD_SIZE' in os.environ and int(os.environ['WORLD_SIZE']) > 1:
self.distributed = True
self.setup_ddp()
self.device = torch.device(f'cuda:{args.local_rank}')
else:
# Single GPU mode
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(0)
set_random_seed(args.seed)
# Load config
with open(args.config, 'r') as f:
self.config = json.load(f)
# Initialize models
self.model = self.build_model()
self.discriminator = self.build_discriminator() if args.use_discriminator else None
# Setup data loaders
self.train_loader, self.val_loader = self.setup_data_loaders()
# Setup optimizers
self.optimizer_g = torch.optim.AdamW(
self.model.parameters(),
lr=args.learning_rate,
betas=(0.5, 0.9),
weight_decay=args.weight_decay
)
if self.discriminator is not None:
self.optimizer_d = torch.optim.AdamW(
self.discriminator.parameters(),
lr=args.learning_rate * 2, # Typically discriminator learns faster
betas=(0.5, 0.9),
weight_decay=args.weight_decay
)
# Initialize gradient scalers for mixed precision
if args.use_mixed_precision:
self.scaler_g = GradScaler()
self.scaler_d = GradScaler() if self.discriminator is not None else None
else:
self.scaler_g = None
self.scaler_d = None
# Calculate total training steps
self.total_steps = args.num_epochs * len(self.train_loader)
# Setup schedulers with warmup
self.scheduler_g = CosineWarmupScheduler(
self.optimizer_g,
warmup_steps=args.warmup_steps,
total_steps=self.total_steps,
eta_min=1e-6
)
if self.discriminator is not None:
self.scheduler_d = CosineWarmupScheduler(
self.optimizer_d,
warmup_steps=args.warmup_steps,
total_steps=self.total_steps,
eta_min=1e-6
)
# Setup losses
self.setup_losses()
# Setup tensorboard
if not self.distributed or rank() == 0:
self.writer = SummaryWriter(
log_dir=os.path.join(args.output_dir, 'logs', get_timestamp())
)
self.global_step = 0
self.start_epoch = 0
# Load checkpoint if exists
if args.resume:
self.load_checkpoint()
def setup_ddp(self):
"""Initialize DDP"""
if 'LOCAL_RANK' in os.environ:
self.args.local_rank = int(os.environ['LOCAL_RANK'])
dist.init_process_group(backend='nccl')
torch.cuda.set_device(self.args.local_rank)
set_random_seed(self.args.seed + rank())
def build_model(self):
"""Build and wrap model with DDP if needed"""
print(self.config)
model = HiggsAudioTokenizer(
n_filters=self.config['n_filters'],
D=self.config['D'],
target_bandwidths=self.config['target_bandwidths'],
ratios=self.config['ratios'],
sample_rate=self.config['sample_rate'],
bins=self.config['bins'],
n_q=self.config['n_q'],
codebook_dim=self.config.get('codebook_dim', None),
semantic_techer=self.config['semantic_techer'],
device=self.device
).to(self.device)
if self.distributed:
# Broadcast model parameters to ensure all ranks have same initialization
broadcast_tensors(model.parameters())
# Wrap with DDP
model = DDP(model, device_ids=[self.args.local_rank])
return model
# def build_discriminator(self):
# """Build discriminator with DDP if needed"""
# # Use sample rate from config
# discriminator = Discriminator(
# rates=[], # No multi-rate discriminator for now
# periods=[2, 3, 5, 7, 11],
# fft_sizes=[2048, 1024, 512],
# sample_rate=self.config['sample_rate'],
# ).to(self.device)
# if self.distributed:
# broadcast_tensors(discriminator.parameters())
# discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
# return discriminator
def build_discriminator(self):
discriminator = Discriminator(
rates=[], # No multi-rate discriminator
periods=[2, 3, 5, 7, 11],
fft_sizes=[2048, 1024, 512],
sample_rate=self.config['sample_rate'], # 24000
).to(self.device)
if self.distributed:
broadcast_tensors(discriminator.parameters())
discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
return discriminator
def setup_losses(self):
# Basic losses
self.l1_loss = L1Loss()
self.stft_loss = MultiScaleSTFTLoss(
window_lengths=[2048, 1024, 512, 256, 128],
loss_fn=nn.L1Loss(),
clamp_eps=1e-5,
mag_weight=1.0,
log_weight=1.0,
)
self.mel_loss = MelSpectrogramLoss(
n_mels=[150, 80],
window_lengths=[2048, 512],
mel_fmin=[0.0, 0.0],
mel_fmax=[None, None],
clamp_eps=1e-5,
mag_weight=1.0,
log_weight=1.0,
)
if self.discriminator is not None:
self.gan_loss = GANLoss(self.discriminator)
self.loss_weights = {
'rec': 1., # Waveform L1 loss
'stft': 1., # Multi-scale STFT loss
'mel': 45.0, # Mel-spectrogram loss
'commit': 0.25, # Commitment loss
'semantic': 1., # Semantic loss
'gen': 1., # Generator adversarial loss
'feat': 2.0, # Feature matching loss
}
def setup_data_loaders(self):
# Split data into train/val
df = pd.read_csv(self.args.data_csv)
n_total = len(df)
n_train = int(n_total * 0.9)
# Create temporary CSV files for train/val split
train_csv = '/tmp/train_audio.csv'
val_csv = '/tmp/val_audio.csv'
if not self.distributed or rank() == 0:
df[:n_train].to_csv(train_csv, index=False)
df[n_train:].to_csv(val_csv, index=False)
if self.distributed:
dist.barrier()
# Create datasets
train_dataset = AudioDataset(
train_csv,
sample_rate=self.config['sample_rate'],
segment_duration=self.args.segment_duration,
is_train=True
)
val_dataset = AudioDataset(
val_csv,
sample_rate=self.config['sample_rate'],
segment_duration=self.args.segment_duration,
is_train=False
)
# Create samplers and loaders
if self.distributed:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
else:
train_sampler = None
val_sampler = None
train_loader = DataLoader(
train_dataset,
batch_size=self.args.batch_size,
sampler=train_sampler,
shuffle=(train_sampler is None),
num_workers=self.args.num_workers,
pin_memory=True,
drop_last=True
)
val_loader = DataLoader(
val_dataset,
batch_size=self.args.batch_size,
sampler=val_sampler,
shuffle=False,
num_workers=self.args.num_workers,
pin_memory=True,
drop_last=False
)
return train_loader, val_loader
def is_main_process(self):
"""Check if this is the main process"""
return not self.distributed or rank() == 0
def train_epoch(self, epoch):
"""Train for one epoch"""
self.model.train()
if self.discriminator is not None:
self.discriminator.train()
if self.distributed:
self.train_loader.sampler.set_epoch(epoch)
total_losses = {
'total': 0, 'rec': 0, 'stft': 0, 'mel': 0,
'commit': 0, 'semantic': 0, 'gen': 0, 'feat': 0, 'disc': 0
}
pbar = tqdm(self.train_loader, desc=f'Epoch {epoch}', disable=not self.is_main_process())
for batch_idx, (audio, paths) in enumerate(pbar):
audio = audio.to(self.device)
# Create AudioSignal objects for loss computation
audio_signal = AudioSignal(audio, self.config['sample_rate'])
# Forward pass with random bandwidth
bw_idx = random.randint(0, len(self.config['target_bandwidths']) - 1)
bw = self.config['target_bandwidths'][bw_idx]
# Use autocast for mixed precision
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, commit_loss, semantic_loss, _ = self.model(audio, bw)
recons_signal = AudioSignal(output, self.config['sample_rate'])
use_discriminator = (self.discriminator is not None and
self.global_step >= self.args.discriminator_start_step)
if use_discriminator and self.global_step % self.args.disc_interval == 0:
self.optimizer_d.zero_grad()
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
disc_loss = self.gan_loss.discriminator_loss(recons_signal, audio_signal)
if self.scaler_d is not None:
self.scaler_d.scale(disc_loss).backward()
self.scaler_d.unscale_(self.optimizer_d)
torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
self.scaler_d.step(self.optimizer_d)
self.scaler_d.update()
else:
disc_loss.backward()
torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
self.optimizer_d.step()
self.scheduler_d.step()
total_losses['disc'] += disc_loss.item()
# Train generator
losses = {}
# Compute losses with autocast
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
# Reconstruction losses
losses['rec'] = self.l1_loss(recons_signal, audio_signal)
losses['stft'] = self.stft_loss(recons_signal, audio_signal)
losses['mel'] = self.mel_loss(recons_signal, audio_signal)
# losses['mel'] = torch.tensor(0.0, device=self.device) # uncomment this for the first 30k steps, it's faster if you pretrain it on semantic / commit loss first
losses['commit'] = commit_loss
losses['semantic'] = semantic_loss
# GAN losses if discriminator is active
if use_discriminator:
gen_loss, feat_loss = self.gan_loss.generator_loss(recons_signal, audio_signal)
losses['gen'] = gen_loss
losses['feat'] = feat_loss
else:
# Set to zero for logging purposes
losses['gen'] = torch.tensor(0.0, device=self.device)
losses['feat'] = torch.tensor(0.0, device=self.device)
# Total weighted loss
total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items()
if k not in ['gen', 'feat'] or use_discriminator)
# Backward pass
self.optimizer_g.zero_grad()
if self.scaler_g is not None:
self.scaler_g.scale(total_loss).backward()
self.scaler_g.unscale_(self.optimizer_g)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.scaler_g.step(self.optimizer_g)
self.scaler_g.update()
else:
total_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer_g.step()
self.scheduler_g.step()
# Update metrics
total_losses['total'] += total_loss.item()
for k, v in losses.items():
total_losses[k] += v.item()
# Update progress bar
if self.is_main_process():
pbar.set_postfix({
'loss': f'{total_loss.item():.4f}',
'rec': f'{losses["rec"].item():.4f}',
'mel': f'{losses["mel"].item():.4f}',
'commit_loss': f'{losses["commit"].item():.4f}',
'semantic_loss': f'{losses["semantic"].item():.4f}',
'lr': f'{self.scheduler_g.get_last_lr()[0]:.9f}',
'disc': 'ON' if use_discriminator else 'OFF',
'step': self.global_step
})
# Log to tensorboard
if self.is_main_process() and self.global_step % self.args.log_interval == 0:
for k, v in losses.items():
self.writer.add_scalar(f'train/{k}_loss', v.item(), self.global_step)
self.writer.add_scalar('train/total_loss', total_loss.item(), self.global_step)
self.writer.add_scalar('train/lr', self.scheduler_g.get_last_lr()[0], self.global_step)
self.writer.add_scalar('train/bandwidth', bw, self.global_step)
self.writer.add_scalar('train/discriminator_active', float(use_discriminator), self.global_step)
if use_discriminator:
self.writer.add_scalar('train/disc_loss', total_losses['disc'] / max(1, batch_idx), self.global_step)
if self.scaler_g is not None:
self.writer.add_scalar('train/grad_scale', self.scaler_g.get_scale(), self.global_step)
# Save checkpoint at step intervals
if self.global_step > 0 and self.global_step % self.args.save_step_interval == 0:
self.save_checkpoint_step(self.global_step)
if self.is_main_process():
print(f"\nSaved checkpoint at step {self.global_step}")
self.global_step += 1
# Return average losses
n_batches = len(self.train_loader)
return {k: v / n_batches for k, v in total_losses.items()}
@torch.no_grad()
def validate(self, epoch):
"""Validation loop"""
self.model.eval()
total_losses = {
'total': 0, 'rec': 0, 'stft': 0, 'mel': 0,
'commit': 0, 'semantic': 0
}
audio_samples = {'train': [], 'val': []}
for batch_idx, (audio, paths) in enumerate(tqdm(self.val_loader, desc='Validation', disable=not self.is_main_process())):
audio = audio.to(self.device)
audio_signal = AudioSignal(audio, self.config['sample_rate'])
# Use medium bandwidth for validation
bw = self.config['target_bandwidths'][2]
# Use autocast for validation too
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, commit_loss, semantic_loss, _ = self.model(audio, bw)
recons_signal = AudioSignal(output, self.config['sample_rate'])
# Compute losses
losses = {
'rec': self.l1_loss(recons_signal, audio_signal),
'stft': self.stft_loss(recons_signal, audio_signal),
'mel': self.mel_loss(recons_signal, audio_signal),
'commit': commit_loss,
'semantic': semantic_loss
}
total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items())
total_losses['total'] += total_loss.item()
for k, v in losses.items():
total_losses[k] += v.item()
# Collect audio samples for tensorboard (first 3 from validation)
if self.is_main_process() and len(audio_samples['val']) < 3:
audio_samples['val'].append({
'original': audio[0].cpu(),
'reconstructed': output[0].cpu(),
'path': paths[0]
})
# Get train samples for comparison
if self.is_main_process():
self.model.eval()
for batch_idx, (audio, paths) in enumerate(self.train_loader):
if len(audio_samples['train']) >= 3:
break
audio = audio.to(self.device)
bw = self.config['target_bandwidths'][2]
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, _, _, _ = self.model(audio, bw)
audio_samples['train'].append({
'original': audio[0].cpu(),
'reconstructed': output[0].cpu(),
'path': paths[0]
})
# Log audio samples to tensorboard
if self.is_main_process():
for split in ['train', 'val']:
for idx, sample in enumerate(audio_samples[split]):
self.writer.add_audio(
f'{split}/original_{idx}',
sample['original'],
epoch,
sample_rate=self.config['sample_rate']
)
self.writer.add_audio(
f'{split}/reconstructed_{idx}',
sample['reconstructed'],
epoch,
sample_rate=self.config['sample_rate']
)
# Average losses
n_batches = len(self.val_loader)
val_metrics = {k: v / n_batches for k, v in total_losses.items()}
# Log validation metrics
if self.is_main_process():
for key, value in val_metrics.items():
self.writer.add_scalar(f'val/{key}_loss', value, epoch)
return val_metrics
def save_checkpoint(self, epoch, is_best=False):
"""Save model checkpoint (epoch-based)"""
if not self.is_main_process():
return
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
# Get current learning rates for verification
current_lr_g = self.scheduler_g.get_last_lr()[0]
checkpoint = {
'epoch': epoch,
'global_step': self.global_step,
'model_state_dict': model_state,
'optimizer_g_state_dict': self.optimizer_g.state_dict(),
'scheduler_g_state_dict': self.scheduler_g.state_dict(),
'scheduler_g_last_epoch': self.scheduler_g.last_epoch, # Explicitly save this
'current_lr_g': current_lr_g, # Save for verification
'config': self.config,
'args': self.args
}
# Save gradient scaler states if using mixed precision
if self.scaler_g is not None:
checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
if self.discriminator is not None:
disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
current_lr_d = self.scheduler_d.get_last_lr()[0]
checkpoint['discriminator_state_dict'] = disc_state
checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
checkpoint['current_lr_d'] = current_lr_d
if self.scaler_d is not None:
checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
# Save latest checkpoint
checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
torch.save(checkpoint, checkpoint_path)
# Save best checkpoint
if is_best:
best_path = os.path.join(self.args.output_dir, 'checkpoints', 'best.pth')
torch.save(checkpoint, best_path)
# Save periodic checkpoint
if epoch % self.args.save_interval == 0:
epoch_path = os.path.join(self.args.output_dir, 'checkpoints', f'epoch_{epoch}.pth')
torch.save(checkpoint, epoch_path)
def save_checkpoint_step(self, step):
"""Save model checkpoint (step-based)"""
if not self.is_main_process():
return
# Get current epoch from training loop
current_epoch = step // len(self.train_loader)
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
# Get current learning rates for verification
current_lr_g = self.scheduler_g.get_last_lr()[0]
checkpoint = {
'epoch': current_epoch,
'global_step': step,
'model_state_dict': model_state,
'optimizer_g_state_dict': self.optimizer_g.state_dict(),
'scheduler_g_state_dict': self.scheduler_g.state_dict(),
'scheduler_g_last_epoch': self.scheduler_g.last_epoch, # Explicitly save this
'current_lr_g': current_lr_g, # Save for verification
'config': self.config,
'args': self.args
}
# Save gradient scaler states if using mixed precision
if self.scaler_g is not None:
checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
if self.discriminator is not None:
disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
current_lr_d = self.scheduler_d.get_last_lr()[0]
checkpoint['discriminator_state_dict'] = disc_state
checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
checkpoint['current_lr_d'] = current_lr_d
if self.scaler_d is not None:
checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
# Create checkpoint directory if it doesn't exist
checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
os.makedirs(checkpoint_dir, exist_ok=True)
# Save step-based checkpoint
step_path = os.path.join(self.args.output_dir, 'checkpoints', f'step_{step}.pth')
torch.save(checkpoint, step_path)
# Also update latest checkpoint
latest_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
torch.save(checkpoint, latest_path)
# Keep only the last N step-based checkpoints to save disk space
if self.args.keep_last_n_steps > 0:
checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
step_checkpoints = sorted([f for f in os.listdir(checkpoint_dir) if f.startswith('step_')])
if len(step_checkpoints) > self.args.keep_last_n_steps:
for old_checkpoint in step_checkpoints[:-self.args.keep_last_n_steps]:
os.remove(os.path.join(checkpoint_dir, old_checkpoint))
def load_checkpoint(self):
checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
if os.path.exists(checkpoint_path):
print(f"Loading checkpoint from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
if self.distributed:
self.model.module.load_state_dict(checkpoint['model_state_dict'])
else:
self.model.load_state_dict(checkpoint['model_state_dict'])
# Load optimizer state
self.optimizer_g.load_state_dict(checkpoint['optimizer_g_state_dict'])
# Load scheduler state
self.scheduler_g.load_state_dict(checkpoint['scheduler_g_state_dict'])
# Restore scheduler's last_epoch from checkpoint
if 'scheduler_g_last_epoch' in checkpoint:
self.scheduler_g.last_epoch = checkpoint['scheduler_g_last_epoch']
else:
self.scheduler_g.last_epoch = checkpoint['global_step']
# Force scheduler to recompute its internal state
self.scheduler_g._last_lr = self.scheduler_g.get_lr()
# Load gradient scaler state if using mixed precision
if self.scaler_g is not None and 'scaler_g_state_dict' in checkpoint:
self.scaler_g.load_state_dict(checkpoint['scaler_g_state_dict'])
# Load discriminator if present
if self.discriminator is not None and 'discriminator_state_dict' in checkpoint:
if self.distributed:
self.discriminator.module.load_state_dict(checkpoint['discriminator_state_dict'])
else:
self.discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
self.optimizer_d.load_state_dict(checkpoint['optimizer_d_state_dict'])
self.scheduler_d.load_state_dict(checkpoint['scheduler_d_state_dict'])
# Restore discriminator scheduler's last_epoch
if 'scheduler_d_last_epoch' in checkpoint:
self.scheduler_d.last_epoch = checkpoint['scheduler_d_last_epoch']
else:
self.scheduler_d.last_epoch = checkpoint['global_step']
self.scheduler_d._last_lr = self.scheduler_d.get_lr()
if self.scaler_d is not None and 'scaler_d_state_dict' in checkpoint:
self.scaler_d.load_state_dict(checkpoint['scaler_d_state_dict'])
# Restore training state
self.start_epoch = checkpoint['epoch'] + 1
self.global_step = checkpoint['global_step']
# Verify learning rate restoration
current_lr_g = self.scheduler_g.get_last_lr()[0]
saved_lr_g = checkpoint.get('current_lr_g', None)
print(f"\n{'='*60}")
print(f"CHECKPOINT LOADED SUCCESSFULLY")
print(f"{'='*60}")
print(f"Resumed from epoch: {checkpoint['epoch']}")
print(f"Global step: {self.global_step}")
print(f"Scheduler last_epoch: {self.scheduler_g.last_epoch}")
print(f"Current learning rate (generator): {current_lr_g:.9f}")
print(f"Mixed precision: {'ENABLED' if self.args.use_mixed_precision else 'DISABLED'}")
if saved_lr_g is not None:
print(f"Saved learning rate (generator): {saved_lr_g:.9f}")
if abs(current_lr_g - saved_lr_g) > 1e-9:
print("⚠️ WARNING: Learning rate mismatch! This might indicate improper state restoration.")
if self.discriminator is not None:
current_lr_d = self.scheduler_d.get_last_lr()[0]
saved_lr_d = checkpoint.get('current_lr_d', None)
print(f"Current learning rate (discriminator): {current_lr_d:.9f}")
if saved_lr_d is not None:
print(f"Saved learning rate (discriminator): {saved_lr_d:.9f}")
print(f"Discriminator status: {'ACTIVE' if self.global_step >= self.args.discriminator_start_step else f'INACTIVE (starts at step {self.args.discriminator_start_step})'}")
print(f"Next epoch: {self.start_epoch}")
print(f"Next step checkpoint at: step {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
print(f"{'='*60}\n")
g
if self.global_step > 0:
temp_scheduler = CosineWarmupScheduler(
self.optimizer_g,
self.args.warmup_steps,
self.total_steps,
eta_min=1e-6,
last_epoch=-1
)
# Step it to the current global step
for _ in range(self.global_step):
temp_scheduler.step()
expected_lr = temp_scheduler.get_last_lr()[0]
if abs(current_lr_g - expected_lr) > 1e-9:
print(f"⚠️ Learning rate verification failed!")
print(f" Expected: {expected_lr:.9f}")
print(f" Got: {current_lr_g:.9f}")
print(" The scheduler state might not be properly restored.")
else:
print(f"No checkpoint found at {checkpoint_path}, starting from scratch")
def train(self):
"""Main training loop"""
best_val_loss = float('inf')
# Print training configuration
if self.is_main_process():
print(f"\n{'='*50}")
print(f"Training Configuration:")
print(f"{'='*50}")
print(f"Total epochs: {self.args.num_epochs}")
print(f"Steps per epoch: {len(self.train_loader)}")
print(f"Total steps: {self.total_steps}")
print(f"Warmup steps: {self.args.warmup_steps}")
print(f"Mixed precision training: {'ENABLED (bfloat16)' if self.args.use_mixed_precision else 'DISABLED'}")
print(f"Discriminator starts at step: {self.args.discriminator_start_step}")
print(f"Checkpoint saving:")
print(f" - Every {self.args.save_interval} epochs")
print(f" - Every {self.args.save_step_interval} steps")
print(f" - Keep last {self.args.keep_last_n_steps} step checkpoints")
if self.start_epoch > 0:
print(f"RESUMING from epoch {self.start_epoch}, step {self.global_step}")
print(f"{'='*50}\n")
for epoch in range(self.start_epoch, self.args.num_epochs):
# IMPORTANT: Set the epoch for distributed sampler when resuming
# This ensures proper data shuffling across epochs
if self.distributed and hasattr(self.train_loader.sampler, 'set_epoch'):
self.train_loader.sampler.set_epoch(epoch)
# Train
train_metrics = self.train_epoch(epoch)
# Validate
val_metrics = self.validate(epoch)
# Log epoch metrics
if self.is_main_process():
print(f"\nEpoch {epoch} Summary:")
print(f"Train - Total: {train_metrics['total']:.4f}, Rec: {train_metrics['rec']:.4f}, "
f"STFT: {train_metrics['stft']:.4f}, Mel: {train_metrics['mel']:.4f}, "
f"Commit: {train_metrics['commit']:.4f}, Semantic: {train_metrics['semantic']:.4f}")
if self.discriminator is not None:
print(f" Gen: {train_metrics['gen']:.4f}, Feat: {train_metrics['feat']:.4f}, "
f"Disc: {train_metrics['disc']:.4f}")
print(f" Discriminator Status: {'Active' if self.global_step >= self.args.discriminator_start_step else f'Starting at step {self.args.discriminator_start_step}'}")
print(f"Val - Total: {val_metrics['total']:.4f}, Rec: {val_metrics['rec']:.4f}, "
f"STFT: {val_metrics['stft']:.4f}, Mel: {val_metrics['mel']:.4f}, "
f"Commit: {val_metrics['commit']:.4f}, Semantic: {val_metrics['semantic']:.4f}")
print(f"Current Step: {self.global_step}, Next step checkpoint at: {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
print(f"Current LR: {self.scheduler_g.get_last_lr()[0]:.9f}")
# Save checkpoint
is_best = val_metrics['total'] < best_val_loss
if is_best:
best_val_loss = val_metrics['total']
self.save_checkpoint(epoch, is_best)
# Save final model
if self.is_main_process():
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
final_path = os.path.join(self.args.output_dir, 'checkpoints', 'final.pth')
torch.save({
'model_state_dict': model_state,
'config': self.config
}, final_path)
# Also save just the model weights in the format expected by the original code
model_only_path = os.path.join(self.args.output_dir, 'model.pth')
torch.save(model_state, model_only_path)
# Copy config
import shutil
shutil.copy(self.args.config, os.path.join(self.args.output_dir, 'config.json'))
# Cleanup
if self.is_main_process():
self.writer.close()
if self.distributed:
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser(description='Train Boson Audio Codec')
# Data arguments
parser.add_argument('--data_csv', type=str, required=True,
help='Path to CSV file containing audio file paths')
parser.add_argument('--config', type=str, default='config.json',
help='Path to config JSON file')
# Training arguments
parser.add_argument('--batch_size', type=int, default=28,
help='Batch size per GPU')
parser.add_argument('--num_epochs', type=int, default=100,
help='Number of training epochs')
parser.add_argument('--learning_rate', type=float, default=1e-4,
help='Initial learning rate')
parser.add_argument('--weight_decay', type=float, default=0.01,
help='Weight decay')
parser.add_argument('--segment_duration', type=float, default=2.,
help='Audio segment duration in seconds')
# Mixed precision training
parser.add_argument('--use_mixed_precision', action='store_true',
help='Use bfloat16 mixed precision training')
# Scheduler arguments
parser.add_argument('--warmup_steps', type=int, default=5000,
help='Number of warmup steps for cosine scheduler')
# Loss arguments
parser.add_argument('--use_discriminator', action='store_true',
help='Use adversarial training with discriminator')
parser.add_argument('--discriminator_start_step', type=int, default=30_000,
help='Start training discriminator after N steps')
parser.add_argument('--disc_interval', type=int, default=1,
help='Train discriminator every N steps')
# System arguments
parser.add_argument('--output_dir', type=str, default='outputs_mp_cqt',
help='Output directory for checkpoints and logs')
parser.add_argument('--num_workers', type=int, default=16,
help='Number of data loading workers')
parser.add_argument('--seed', type=int, default=42,
help='Random seed')
parser.add_argument('--local_rank', type=int, default=0,
help='Local rank for distributed training')
# Logging arguments
parser.add_argument('--log_interval', type=int, default=10,
help='Log every N steps')
parser.add_argument('--save_interval', type=int, default=1,
help='Save checkpoint every N epochs')
parser.add_argument('--save_step_interval', type=int, default=1000,
help='Save checkpoint every N steps')
parser.add_argument('--keep_last_n_steps', type=int, default=5,
help='Keep only the last N step-based checkpoints (0 to keep all)')
# Resume training
parser.add_argument('--resume', action='store_true',
help='Resume training from latest checkpoint') # NOTE: you gotta change your desired checkpoint's name to latest.pth
args = parser.parse_args()
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Train
trainer = BosonTrainer(args)
trainer.train()
if __name__ == '__main__':
torch.set_float32_matmul_precision('high')
main() |