File size: 6,585 Bytes
95636c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from abc import ABC

import torch
import torch.nn.functional as F

from modules.diffusion_transformer import DiT
from modules.commons import sequence_mask

from tqdm import tqdm

class BASECFM(torch.nn.Module, ABC):
    def __init__(
        self,
        args,
    ):
        super().__init__()
        self.sigma_min = 1e-6

        self.estimator = None

        self.in_channels = args.DiT.in_channels

        self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()

        if hasattr(args.DiT, 'zero_prompt_speech_token'):
            self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
        else:
            self.zero_prompt_speech_token = False

    @torch.inference_mode()
    def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
        """Forward diffusion

        Args:
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            n_timesteps (int): number of diffusion steps
            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes

        Returns:
            sample: generated mel-spectrogram
                shape: (batch_size, n_feats, mel_timesteps)
        """
        B, T = mu.size(0), mu.size(1)
        z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
        # t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
        return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)

    def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes
        """
        t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0]

        # I am storing this because I can later plot it by putting a debugger here and saving it to a file
        # Or in future might add like a return_all_steps flag
        sol = []
        # apply prompt
        prompt_len = prompt.size(-1)
        prompt_x = torch.zeros_like(x)
        prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
        x[..., :prompt_len] = 0
        if self.zero_prompt_speech_token:
            mu[..., :prompt_len] = 0
        for step in tqdm(range(1, len(t_span))):
            dt = t_span[step] - t_span[step - 1]
            if inference_cfg_rate > 0:
                # Stack original and CFG (null) inputs for batched processing
                stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0)
                stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0)
                stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0)
                stacked_x = torch.cat([x, x], dim=0)
                stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0)

                # Perform a single forward pass for both original and CFG inputs
                stacked_dphi_dt = self.estimator(
                    stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu,
                )

                # Split the output back into the original and CFG components
                dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0)

                # Apply CFG formula
                dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt
            else:
                dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)

            x = x + dt * dphi_dt
            t = t + dt
            sol.append(x)
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t
            x[:, :, :prompt_len] = 0

        return sol[-1]
    def forward(self, x1, x_lens, prompt_lens, mu, style):
        """Computes diffusion loss

        Args:
            x1 (torch.Tensor): Target
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): target mask
                shape: (batch_size, 1, mel_timesteps)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            spks (torch.Tensor, optional): speaker embedding. Defaults to None.
                shape: (batch_size, spk_emb_dim)

        Returns:
            loss: conditional flow matching loss
            y: conditional flow
                shape: (batch_size, n_feats, mel_timesteps)
        """
        b, _, t = x1.shape

        # random timestep
        t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
        # sample noise p(x_0)
        z = torch.randn_like(x1)

        y = (1 - (1 - self.sigma_min) * t) * z + t * x1
        u = x1 - (1 - self.sigma_min) * z

        prompt = torch.zeros_like(x1)
        for bib in range(b):
            prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
            # range covered by prompt are set to 0
            y[bib, :, :prompt_lens[bib]] = 0
            if self.zero_prompt_speech_token:
                mu[bib, :, :prompt_lens[bib]] = 0

        estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens)
        loss = 0
        for bib in range(b):
            loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
        loss /= b

        return loss, estimator_out + (1 - self.sigma_min) * z



class CFM(BASECFM):
    def __init__(self, args):
        super().__init__(
            args
        )
        if args.dit_type == "DiT":
            self.estimator = DiT(args)
        else:
            raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")