|
--- |
|
language: es |
|
tags: |
|
- zero-shot-classification |
|
- nli |
|
- pytorch |
|
datasets: |
|
- xnli |
|
license: mit |
|
pipeline_tag: zero-shot-classification |
|
widget: |
|
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" |
|
candidate_labels: "cultura, sociedad, economia, salud, deportes" |
|
--- |
|
|
|
# bert-base-spanish-wwm-cased-xnli |
|
|
|
**UPDATE, 15.10.2021: Check out our new zero-shot classifiers, much more lightweight and even outperforming this one: [zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) and [zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium).** |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. You can have a look at the [training script](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli/blob/main/zeroshot_training_script.py) for details of the training. |
|
|
|
### How to use |
|
|
|
You can use this model with Hugging Face's [zero-shot-classification pipeline](https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681): |
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification", |
|
model="Recognai/bert-base-spanish-wwm-cased-xnli") |
|
|
|
classifier( |
|
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", |
|
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], |
|
hypothesis_template="Este ejemplo es {}." |
|
) |
|
"""output |
|
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', |
|
'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'], |
|
'scores': [0.38897448778152466, |
|
0.22997373342514038, |
|
0.1658431738615036, |
|
0.1205764189362526, |
|
0.09463217109441757]} |
|
""" |
|
``` |
|
## Eval results |
|
|
|
|
|
Accuracy for the test set: |
|
|
|
| | XNLI-es | |
|
|-----------------------------|---------| |
|
|bert-base-spanish-wwm-cased-xnli | 79.9% | |