font-identifier / README.md
Razertory's picture
Model save
f762a93 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: font-identifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0010
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.2404 0.9524 15 3.1135 0.06
2.7846 1.9683 31 2.4576 0.33
2.3956 2.9841 47 1.7152 0.58
1.6171 4.0 63 1.0931 0.775
1.2882 4.9524 78 0.6347 0.85
0.7191 5.9683 94 0.3957 0.94
0.5196 6.9841 110 0.2080 0.965
0.3999 8.0 126 0.1480 0.965
0.2476 8.9524 141 0.0934 0.985
0.2176 9.9683 157 0.0768 0.99
0.194 10.9841 173 0.0365 0.995
0.1572 12.0 189 0.0616 0.985
0.1381 12.9524 204 0.0640 0.985
0.1291 13.9683 220 0.0522 0.985
0.094 14.9841 236 0.0442 0.99
0.1037 16.0 252 0.0492 0.99
0.1067 16.9524 267 0.0629 0.985
0.0912 17.9683 283 0.0486 0.985
0.0702 18.9841 299 0.0344 0.99
0.0677 20.0 315 0.0242 0.995
0.0566 20.9524 330 0.0295 0.99
0.0742 21.9683 346 0.0300 0.99
0.0675 22.9841 362 0.0159 1.0
0.0501 24.0 378 0.0105 0.995
0.0651 24.9524 393 0.0362 0.995
0.0665 25.9683 409 0.0335 0.985
0.0533 26.9841 425 0.0369 0.99
0.0487 28.0 441 0.0296 0.99
0.0384 28.9524 456 0.0177 0.995
0.038 29.9683 472 0.0176 0.995
0.0342 30.9841 488 0.0165 0.995
0.055 32.0 504 0.0199 0.995
0.0418 32.9524 519 0.0022 1.0
0.0447 33.9683 535 0.0071 0.995
0.0436 34.9841 551 0.0587 0.98
0.0307 36.0 567 0.0244 0.995
0.0413 36.9524 582 0.0227 0.99
0.0351 37.9683 598 0.0323 0.99
0.0267 38.9841 614 0.0510 0.985
0.0259 40.0 630 0.0009 1.0
0.0245 40.9524 645 0.0017 1.0
0.0227 41.9683 661 0.0208 0.995
0.0458 42.9841 677 0.0445 0.99
0.0263 44.0 693 0.0339 0.99
0.0458 44.9524 708 0.0124 0.995
0.0374 45.9683 724 0.0253 0.995
0.0413 46.9841 740 0.0025 1.0
0.0413 47.6190 750 0.0010 1.0

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.1.0
  • Tokenizers 0.20.1