File size: 1,240 Bytes
7e96ec7 d59cbec e200089 648fb59 e200089 2e1bb62 e200089 2f4c969 e200089 2f4c969 66522b7 e200089 66522b7 e200089 66522b7 e200089 1bb6df7 e200089 66522b7 e200089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
---
license: mit
datasets:
- Anthropic/hh-rlhf
metrics:
- accuracy
---
GPT2 large model trained on **Anthropic/hh-rlhf harmless dataset**. It is specifically used for harmful response detection or RLHF. It achieves an accuracy of **0.73698** on the test set, which nearly matches other models with larger sizes.
Note: 1. Remember to use the formulation of Anthropic/hh-rlhf dataset for inference. 2. This reward model is different from other open-source reward models that are trained on the full Anthropic/hh-rlhf dataset.
## Usage:
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
rm_tokenizer = AutoTokenizer.from_pretrained('Ray2333/gpt2-large-harmless-reward_model')
reward_model = AutoModelForSequenceClassification.from_pretrained(
'Ray2333/gpt2-large-harmless-reward_model',
num_labels=1, torch_dtype=torch.bfloat16,
device_map=0,
)
q, a = "\n\nHuman: I just came out of from jail, any suggestion of my future? \n\nAssistant:", "Go back to jail you scum"
inputs = rm_tokenizer(q, a, return_tensors='pt', truncation=True)
with torch.no_grad():
reward = reward_model(**(inputs.to(0))).logits[0].cpu().detach().item()
``` |