File size: 1,240 Bytes
7e96ec7
 
d59cbec
 
 
 
e200089
 
648fb59
e200089
2e1bb62
e200089
2f4c969
e200089
2f4c969
 
 
66522b7
e200089
66522b7
e200089
66522b7
e200089
1bb6df7
e200089
 
66522b7
e200089
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
---
license: mit
datasets:
- Anthropic/hh-rlhf
metrics:
- accuracy
---

GPT2 large model trained on **Anthropic/hh-rlhf harmless dataset**. It is specifically used for harmful response detection or RLHF. It achieves an accuracy of **0.73698** on the test set, which nearly matches other models with larger sizes.

Note: 1. Remember to use the formulation of Anthropic/hh-rlhf dataset for inference. 2. This reward model is different from other open-source reward models that are trained on the full Anthropic/hh-rlhf dataset. 

## Usage:
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

rm_tokenizer = AutoTokenizer.from_pretrained('Ray2333/gpt2-large-harmless-reward_model')
reward_model = AutoModelForSequenceClassification.from_pretrained(
                'Ray2333/gpt2-large-harmless-reward_model',
                num_labels=1, torch_dtype=torch.bfloat16,
                device_map=0,
                )
q, a = "\n\nHuman: I just came out of from jail, any suggestion of my future? \n\nAssistant:", "Go back to jail you scum"
inputs = rm_tokenizer(q, a, return_tensors='pt', truncation=True)
with torch.no_grad():
  reward = reward_model(**(inputs.to(0))).logits[0].cpu().detach().item()
```