File size: 1,967 Bytes
8a1b0d7 36315d3 8a1b0d7 36315d3 8a1b0d7 ef320a3 36315d3 8a1b0d7 36315d3 8a1b0d7 36315d3 8a1b0d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: Ransaka/whisper-tiny-sinhala-20k-8k-steps
tags:
- generated_from_trainer
datasets:
- sinhala_asr
metrics:
- wer
model-index:
- name: whisper-tiny-sinhala-20k-8k-steps-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: sinhala_asr
type: sinhala_asr
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 51.635748880562915
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-sinhala-20k-8k-steps-v2
This model is a fine-tuned version of None on the sinhala_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1889
- Wer: 51.6357
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.213 | 0.53 | 1000 | 0.2200 | 57.9731 |
| 0.1611 | 1.07 | 2000 | 0.2017 | 54.4777 |
| 0.1601 | 1.6 | 3000 | 0.1942 | 53.3355 |
| 0.1384 | 2.13 | 4000 | 0.1913 | 52.2206 |
| 0.1101 | 2.67 | 5000 | 0.1889 | 51.6357 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|