File size: 1,712 Bytes
5c4cee1
 
 
 
 
01547fb
5c4cee1
 
 
 
 
ed30ec0
5c4cee1
ed30ec0
5c4cee1
 
 
ed30ec0
5c4cee1
 
 
 
 
 
 
 
 
ebbbe36
 
a0e8378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebbbe36
 
5c4cee1
 
 
 
 
fdd4a2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: Ransaka/sinhala-ocr-model
model-index:
- name: sinhala-ocr-model-v2
  results: []
pipeline_tag: image-to-text
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TrOCR-Sinhala

See training metrics tab for performance details.

## Model description

This model is finetuned version of Microsoft [TrOCR Printed](https://huggingface.co/microsoft/trocr-base-printed)

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Example 
```python
from PIL import Image
import requests
from io import BytesIO

from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer

image_url = "https://datasets-server.huggingface.co/assets/Ransaka/sinhala_synthetic_ocr/--/bf7c8a455b564cd73fe035031e19a5f39babb73b/--/default/train/0/image/image.jpg"
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))

processor = TrOCRProcessor.from_pretrained('Ransaka/TrOCR-Sinhala')
model = VisionEncoderDecoderModel.from_pretrained('Ransaka/TrOCR-Sinhala')
model.to("cuda:0")

pixel_values = processor(img, return_tensors="pt").pixel_values.to('cuda:0')  
generated_ids = model.generate(pixel_values,num_beams=2,early_stopping=True)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
generated_text #දිවයිනට බලයට ඇති ආපදා තත්ත්වය හමුවේ සබරගමුව පළාතේ
```

### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.0
- Datasets 2.16.0
- Tokenizers 0.15.0