File size: 10,843 Bytes
4ec885f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- Ramyashree/Dataset-setfit-Trainer
metrics:
- accuracy
widget:
- text: I wanna obtain some invoices, can you tell me how to do it?
- text: where to close my user account
- text: I have a problem when trying to pay, help me report it
- text: the concert was cancelled and I want to obtain a reimbursement
- text: I got an error message when I tried to make a payment, but I was charged anyway,
can you help me?
pipeline_tag: text-classification
inference: true
base_model: thenlper/gte-large
---
# SetFit with thenlper/gte-large
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Ramyashree/Dataset-setfit-Trainer](https://huggingface.co/datasets/Ramyashree/Dataset-setfit-Trainer) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
- **Training Dataset:** [Ramyashree/Dataset-setfit-Trainer](https://huggingface.co/datasets/Ramyashree/Dataset-setfit-Trainer)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| create_account | <ul><li>"I don't have an online account, what do I have to do to register?"</li><li>'can you tell me if i can regisger two accounts with a single email address?'</li><li>'I have no online account, open one, please'</li></ul> |
| edit_account | <ul><li>'how can I modify the information on my profile?'</li><li>'can u ask an agent how to make changes to my profile?'</li><li>'I want to update the information on my profile'</li></ul> |
| delete_account | <ul><li>'can I close my account?'</li><li>"I don't want my account, can you delete it?"</li><li>'how do i close my online account?'</li></ul> |
| switch_account | <ul><li>'I would like to use my other online account , could you switch them, please?'</li><li>'i want to use my other online account, can u change them?'</li><li>'how do i change to another account?'</li></ul> |
| get_invoice | <ul><li>'what can you tell me about getting some bills?'</li><li>'tell me where I can request a bill'</li><li>'ask an agent if i can obtain some bills'</li></ul> |
| get_refund | <ul><li>'the game was postponed, help me obtain a reimbursement'</li><li>'the game was postponed, what should I do to obtain a reimbursement?'</li><li>'the concert was postponed, what should I do to request a reimbursement?'</li></ul> |
| payment_issue | <ul><li>'i have an issue making a payment with card and i want to inform of it, please'</li><li>'I got an error message when I attempted to pay, but my card was charged anyway and I want to notify it'</li><li>'I want to notify a problem making a payment, can you help me?'</li></ul> |
| check_refund_policy | <ul><li>"I'm interested in your reimbursement polivy"</li><li>'i wanna see your refund policy, can u help me?'</li><li>'where do I see your money back policy?'</li></ul> |
| recover_password | <ul><li>'my online account was hacked and I want tyo get it back'</li><li>"I lost my password and I'd like to retrieve it, please"</li><li>'could u ask an agent how i can reset my password?'</li></ul> |
| track_refund | <ul><li>'tell me if my refund was processed'</li><li>'I need help checking the status of my refund'</li><li>'I want to see the status of my refund, can you help me?'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ramyashree/gte-large-with500records-test")
# Run inference
preds = model("where to close my user account")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 10.258 | 24 |
| Label | Training Sample Count |
|:--------------------|:----------------------|
| check_refund_policy | 50 |
| create_account | 50 |
| delete_account | 50 |
| edit_account | 50 |
| get_invoice | 50 |
| get_refund | 50 |
| payment_issue | 50 |
| recover_password | 50 |
| switch_account | 50 |
| track_refund | 50 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3248 | - |
| 0.04 | 50 | 0.1606 | - |
| 0.08 | 100 | 0.0058 | - |
| 0.12 | 150 | 0.0047 | - |
| 0.16 | 200 | 0.0009 | - |
| 0.2 | 250 | 0.0007 | - |
| 0.24 | 300 | 0.001 | - |
| 0.28 | 350 | 0.0008 | - |
| 0.32 | 400 | 0.0005 | - |
| 0.36 | 450 | 0.0004 | - |
| 0.4 | 500 | 0.0005 | - |
| 0.44 | 550 | 0.0005 | - |
| 0.48 | 600 | 0.0006 | - |
| 0.52 | 650 | 0.0005 | - |
| 0.56 | 700 | 0.0004 | - |
| 0.6 | 750 | 0.0004 | - |
| 0.64 | 800 | 0.0002 | - |
| 0.68 | 850 | 0.0003 | - |
| 0.72 | 900 | 0.0002 | - |
| 0.76 | 950 | 0.0002 | - |
| 0.8 | 1000 | 0.0003 | - |
| 0.84 | 1050 | 0.0002 | - |
| 0.88 | 1100 | 0.0002 | - |
| 0.92 | 1150 | 0.0003 | - |
| 0.96 | 1200 | 0.0003 | - |
| 1.0 | 1250 | 0.0003 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |