hubert-base-ser / README.md
RamiEbeid's picture
Update README.md
8127ef5
|
raw
history blame
5.98 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hubert-base-ser
    results: []

hubert-base-ser

This model is a fine-tuned version of facebook/hubert-base-ls960 on the Crema dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0105
  • Accuracy: 0.6313

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8106 0.01 10 1.7616 0.1974
1.7268 0.03 20 1.7187 0.2525
1.7269 0.04 30 1.6442 0.3096
1.7086 0.05 40 1.5834 0.3338
1.6983 0.07 50 1.6195 0.3600
1.5845 0.08 60 1.5753 0.3418
1.5744 0.09 70 1.5669 0.3707
1.5915 0.11 80 1.5412 0.3754
1.5105 0.12 90 2.0037 0.2612
1.4689 0.13 100 1.5440 0.3627
1.527 0.15 110 1.5400 0.3862
1.6481 0.16 120 1.6678 0.3298
1.7504 0.17 130 1.6078 0.2995
1.3748 0.19 140 1.5750 0.3251
1.6417 0.2 150 1.7034 0.2599
1.6146 0.21 160 1.6162 0.3519
1.4896 0.23 170 1.5245 0.3741
1.4278 0.24 180 1.7537 0.2424
1.4475 0.26 190 1.4769 0.3882
1.5416 0.27 200 1.4772 0.3949
1.5997 0.28 210 1.4428 0.4278
1.4337 0.3 220 1.4352 0.4124
1.415 0.31 230 1.4405 0.4157
1.5196 0.32 240 1.4197 0.4043
1.3866 0.34 250 1.5241 0.3734
1.3041 0.35 260 1.5703 0.4043
1.3618 0.36 270 1.3963 0.4285
1.3293 0.38 280 1.3478 0.4506
1.2215 0.39 290 1.5994 0.3842
1.6618 0.4 300 1.7751 0.2277
1.5349 0.42 310 1.6091 0.4036
1.4037 0.43 320 1.4741 0.4446
1.4844 0.44 330 1.4170 0.4399
1.2806 0.46 340 1.2887 0.5050
1.3818 0.47 350 1.2668 0.5017
1.3491 0.48 360 1.4721 0.4594
1.2347 0.5 370 1.2188 0.5245
1.2182 0.51 380 1.3813 0.4567
1.2513 0.52 390 1.2111 0.5205
1.2447 0.54 400 1.2231 0.5460
1.038 0.55 410 1.2563 0.5373
1.2409 0.56 420 1.3448 0.4936
1.2279 0.58 430 1.1972 0.5487
1.3256 0.59 440 1.1706 0.5742
1.2866 0.6 450 1.3091 0.5003
1.0574 0.62 460 1.2075 0.5500
1.2744 0.63 470 1.2831 0.5171
1.0836 0.64 480 1.1768 0.5608
1.135 0.66 490 1.1408 0.5776
1.1303 0.67 500 1.2320 0.5541
1.2068 0.69 510 1.1379 0.5796
1.1347 0.7 520 1.1124 0.5897
1.1846 0.71 530 1.1338 0.5803
1.2409 0.73 540 1.1259 0.5789
1.0664 0.74 550 1.0653 0.6038
1.1637 0.75 560 1.0550 0.5977
1.0707 0.77 570 1.0996 0.5715
1.2258 0.78 580 1.0804 0.5977
0.9256 0.79 590 1.1501 0.5809
1.1542 0.81 600 1.1089 0.5957
1.3931 0.82 610 1.1381 0.5856
1.1117 0.83 620 1.0933 0.6031
1.1433 0.85 630 1.0175 0.6219
1.0325 0.86 640 0.9885 0.6239
1.111 0.87 650 1.0048 0.6259
0.8125 0.89 660 1.0176 0.6165
1.0414 0.9 670 1.0290 0.6185
1.0037 0.91 680 1.0269 0.6253
0.9406 0.93 690 1.0301 0.6273
1.0129 0.94 700 1.0238 0.6326
1.2213 0.95 710 1.0181 0.6273
1.2519 0.97 720 1.0161 0.6266
0.9932 0.98 730 1.0112 0.6279
1.0135 0.99 740 1.0105 0.6313

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.5.dev0
  • Tokenizers 0.11.6