RamNaamSatyaHai's picture
End of training
0dcdbe7
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi gpu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 194.9420130364852
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hi gpu
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8500
- Wer: 194.9420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 8.6847 | 2.44 | 500 | 8.6186 | 184.5213 |
| 7.0074 | 4.88 | 1000 | 6.9394 | 502.2010 |
| 5.0316 | 7.32 | 1500 | 4.9749 | 693.9939 |
| 3.7844 | 9.76 | 2000 | 3.7445 | 447.2488 |
| 3.2504 | 12.2 | 2500 | 3.2245 | 326.1619 |
| 3.0134 | 14.63 | 3000 | 2.9979 | 217.9463 |
| 2.8995 | 17.07 | 3500 | 2.8893 | 213.6164 |
| 2.8678 | 19.51 | 4000 | 2.8500 | 194.9420 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+rocm5.4.2
- Datasets 2.14.5
- Tokenizers 0.12.1