RamNaamSatyaHai's picture
End of training
0dcdbe7
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi gpu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 194.9420130364852

Whisper Small Hi gpu

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8500
  • Wer: 194.9420

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
8.6847 2.44 500 8.6186 184.5213
7.0074 4.88 1000 6.9394 502.2010
5.0316 7.32 1500 4.9749 693.9939
3.7844 9.76 2000 3.7445 447.2488
3.2504 12.2 2500 3.2245 326.1619
3.0134 14.63 3000 2.9979 217.9463
2.8995 17.07 3500 2.8893 213.6164
2.8678 19.51 4000 2.8500 194.9420

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+rocm5.4.2
  • Datasets 2.14.5
  • Tokenizers 0.12.1