layoutlm-funsd / README.md
RakhissBouchra's picture
End of training
53165c9 verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6573
  • Answer: {'precision': 0.7060773480662983, 'recall': 0.7898640296662547, 'f1': 0.7456242707117853, 'number': 809}
  • Header: {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119}
  • Question: {'precision': 0.7687661777394306, 'recall': 0.8366197183098592, 'f1': 0.8012589928057554, 'number': 1065}
  • Overall Precision: 0.7168
  • Overall Recall: 0.7898
  • Overall F1: 0.7515
  • Overall Accuracy: 0.8172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7999 1.0 10 1.5802 {'precision': 0.008905852417302799, 'recall': 0.00865265760197775, 'f1': 0.00877742946708464, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1717325227963526, 'recall': 0.10610328638497653, 'f1': 0.13116656993615786, 'number': 1065} 0.0831 0.0602 0.0698 0.3604
1.4567 2.0 20 1.2493 {'precision': 0.18839103869653767, 'recall': 0.22867737948084055, 'f1': 0.20658849804578447, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.45693950177935944, 'recall': 0.6028169014084507, 'f1': 0.5198380566801619, 'number': 1065} 0.3465 0.4150 0.3776 0.5986
1.114 3.0 30 0.9406 {'precision': 0.43853820598006643, 'recall': 0.4894932014833127, 'f1': 0.46261682242990654, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5861538461538461, 'recall': 0.7154929577464789, 'f1': 0.6443974630021141, 'number': 1065} 0.5237 0.5810 0.5509 0.7001
0.8434 4.0 40 0.7906 {'precision': 0.5922836287799792, 'recall': 0.7021013597033374, 'f1': 0.6425339366515838, 'number': 809} {'precision': 0.1111111111111111, 'recall': 0.04201680672268908, 'f1': 0.06097560975609755, 'number': 119} {'precision': 0.6526994359387591, 'recall': 0.7605633802816901, 'f1': 0.7025151777970512, 'number': 1065} 0.6160 0.6939 0.6527 0.7541
0.6817 5.0 50 0.7106 {'precision': 0.6502192982456141, 'recall': 0.7330037082818294, 'f1': 0.6891342242882045, 'number': 809} {'precision': 0.25301204819277107, 'recall': 0.17647058823529413, 'f1': 0.20792079207920794, 'number': 119} {'precision': 0.683921568627451, 'recall': 0.8187793427230047, 'f1': 0.7452991452991454, 'number': 1065} 0.6546 0.7456 0.6972 0.7854
0.5737 6.0 60 0.6807 {'precision': 0.6482617586912065, 'recall': 0.7836835599505563, 'f1': 0.7095691102406267, 'number': 809} {'precision': 0.273972602739726, 'recall': 0.16806722689075632, 'f1': 0.20833333333333331, 'number': 119} {'precision': 0.717206132879046, 'recall': 0.7906103286384977, 'f1': 0.7521214828048235, 'number': 1065} 0.6724 0.7506 0.7093 0.7898
0.5058 7.0 70 0.6538 {'precision': 0.6564102564102564, 'recall': 0.7911001236093943, 'f1': 0.7174887892376681, 'number': 809} {'precision': 0.3048780487804878, 'recall': 0.21008403361344538, 'f1': 0.24875621890547264, 'number': 119} {'precision': 0.7324894514767932, 'recall': 0.8150234741784037, 'f1': 0.7715555555555556, 'number': 1065} 0.6838 0.7692 0.7240 0.7996
0.4425 8.0 80 0.6574 {'precision': 0.6625766871165644, 'recall': 0.8009888751545118, 'f1': 0.7252378287632905, 'number': 809} {'precision': 0.3055555555555556, 'recall': 0.2773109243697479, 'f1': 0.2907488986784141, 'number': 119} {'precision': 0.7365771812080537, 'recall': 0.8244131455399061, 'f1': 0.7780239255649092, 'number': 1065} 0.6844 0.7822 0.7300 0.7999
0.3932 9.0 90 0.6375 {'precision': 0.6876971608832808, 'recall': 0.8084054388133498, 'f1': 0.7431818181818182, 'number': 809} {'precision': 0.3645833333333333, 'recall': 0.29411764705882354, 'f1': 0.3255813953488372, 'number': 119} {'precision': 0.752129471890971, 'recall': 0.8291079812206573, 'f1': 0.7887449754354622, 'number': 1065} 0.7078 0.7888 0.7461 0.8087
0.3798 10.0 100 0.6437 {'precision': 0.6981541802388708, 'recall': 0.7948084054388134, 'f1': 0.7433526011560695, 'number': 809} {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} 0.7136 0.7837 0.7470 0.8098
0.3225 11.0 110 0.6566 {'precision': 0.6817226890756303, 'recall': 0.8022249690976514, 'f1': 0.7370812038614423, 'number': 809} {'precision': 0.336, 'recall': 0.35294117647058826, 'f1': 0.3442622950819672, 'number': 119} {'precision': 0.7593856655290102, 'recall': 0.8356807511737089, 'f1': 0.7957085382208315, 'number': 1065} 0.7030 0.7933 0.7454 0.8038
0.3097 12.0 120 0.6421 {'precision': 0.6957928802588996, 'recall': 0.7972805933250927, 'f1': 0.7430875576036866, 'number': 809} {'precision': 0.35, 'recall': 0.35294117647058826, 'f1': 0.35146443514644354, 'number': 119} {'precision': 0.7692307692307693, 'recall': 0.8356807511737089, 'f1': 0.8010801080108011, 'number': 1065} 0.7155 0.7913 0.7515 0.8177
0.2916 13.0 130 0.6515 {'precision': 0.7035010940919038, 'recall': 0.7948084054388134, 'f1': 0.7463726059199072, 'number': 809} {'precision': 0.33076923076923076, 'recall': 0.36134453781512604, 'f1': 0.34538152610441764, 'number': 119} {'precision': 0.7649092480553155, 'recall': 0.8309859154929577, 'f1': 0.7965796579657966, 'number': 1065} 0.7138 0.7883 0.7492 0.8154
0.2707 14.0 140 0.6557 {'precision': 0.7016393442622951, 'recall': 0.7935723114956736, 'f1': 0.7447795823665894, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.36134453781512604, 'f1': 0.34677419354838707, 'number': 119} {'precision': 0.7688966116420504, 'recall': 0.8309859154929577, 'f1': 0.7987364620938627, 'number': 1065} 0.7153 0.7878 0.7498 0.8146
0.2729 15.0 150 0.6573 {'precision': 0.7060773480662983, 'recall': 0.7898640296662547, 'f1': 0.7456242707117853, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119} {'precision': 0.7687661777394306, 'recall': 0.8366197183098592, 'f1': 0.8012589928057554, 'number': 1065} 0.7168 0.7898 0.7515 0.8172

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cpu
  • Datasets 2.19.0
  • Tokenizers 0.19.1