RakhissBouchra commited on
Commit
53165c9
1 Parent(s): bfd4283

End of training

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6573
21
+ - Answer: {'precision': 0.7060773480662983, 'recall': 0.7898640296662547, 'f1': 0.7456242707117853, 'number': 809}
22
+ - Header: {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119}
23
+ - Question: {'precision': 0.7687661777394306, 'recall': 0.8366197183098592, 'f1': 0.8012589928057554, 'number': 1065}
24
+ - Overall Precision: 0.7168
25
+ - Overall Recall: 0.7898
26
+ - Overall F1: 0.7515
27
+ - Overall Accuracy: 0.8172
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.7999 | 1.0 | 10 | 1.5802 | {'precision': 0.008905852417302799, 'recall': 0.00865265760197775, 'f1': 0.00877742946708464, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1717325227963526, 'recall': 0.10610328638497653, 'f1': 0.13116656993615786, 'number': 1065} | 0.0831 | 0.0602 | 0.0698 | 0.3604 |
59
+ | 1.4567 | 2.0 | 20 | 1.2493 | {'precision': 0.18839103869653767, 'recall': 0.22867737948084055, 'f1': 0.20658849804578447, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45693950177935944, 'recall': 0.6028169014084507, 'f1': 0.5198380566801619, 'number': 1065} | 0.3465 | 0.4150 | 0.3776 | 0.5986 |
60
+ | 1.114 | 3.0 | 30 | 0.9406 | {'precision': 0.43853820598006643, 'recall': 0.4894932014833127, 'f1': 0.46261682242990654, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5861538461538461, 'recall': 0.7154929577464789, 'f1': 0.6443974630021141, 'number': 1065} | 0.5237 | 0.5810 | 0.5509 | 0.7001 |
61
+ | 0.8434 | 4.0 | 40 | 0.7906 | {'precision': 0.5922836287799792, 'recall': 0.7021013597033374, 'f1': 0.6425339366515838, 'number': 809} | {'precision': 0.1111111111111111, 'recall': 0.04201680672268908, 'f1': 0.06097560975609755, 'number': 119} | {'precision': 0.6526994359387591, 'recall': 0.7605633802816901, 'f1': 0.7025151777970512, 'number': 1065} | 0.6160 | 0.6939 | 0.6527 | 0.7541 |
62
+ | 0.6817 | 5.0 | 50 | 0.7106 | {'precision': 0.6502192982456141, 'recall': 0.7330037082818294, 'f1': 0.6891342242882045, 'number': 809} | {'precision': 0.25301204819277107, 'recall': 0.17647058823529413, 'f1': 0.20792079207920794, 'number': 119} | {'precision': 0.683921568627451, 'recall': 0.8187793427230047, 'f1': 0.7452991452991454, 'number': 1065} | 0.6546 | 0.7456 | 0.6972 | 0.7854 |
63
+ | 0.5737 | 6.0 | 60 | 0.6807 | {'precision': 0.6482617586912065, 'recall': 0.7836835599505563, 'f1': 0.7095691102406267, 'number': 809} | {'precision': 0.273972602739726, 'recall': 0.16806722689075632, 'f1': 0.20833333333333331, 'number': 119} | {'precision': 0.717206132879046, 'recall': 0.7906103286384977, 'f1': 0.7521214828048235, 'number': 1065} | 0.6724 | 0.7506 | 0.7093 | 0.7898 |
64
+ | 0.5058 | 7.0 | 70 | 0.6538 | {'precision': 0.6564102564102564, 'recall': 0.7911001236093943, 'f1': 0.7174887892376681, 'number': 809} | {'precision': 0.3048780487804878, 'recall': 0.21008403361344538, 'f1': 0.24875621890547264, 'number': 119} | {'precision': 0.7324894514767932, 'recall': 0.8150234741784037, 'f1': 0.7715555555555556, 'number': 1065} | 0.6838 | 0.7692 | 0.7240 | 0.7996 |
65
+ | 0.4425 | 8.0 | 80 | 0.6574 | {'precision': 0.6625766871165644, 'recall': 0.8009888751545118, 'f1': 0.7252378287632905, 'number': 809} | {'precision': 0.3055555555555556, 'recall': 0.2773109243697479, 'f1': 0.2907488986784141, 'number': 119} | {'precision': 0.7365771812080537, 'recall': 0.8244131455399061, 'f1': 0.7780239255649092, 'number': 1065} | 0.6844 | 0.7822 | 0.7300 | 0.7999 |
66
+ | 0.3932 | 9.0 | 90 | 0.6375 | {'precision': 0.6876971608832808, 'recall': 0.8084054388133498, 'f1': 0.7431818181818182, 'number': 809} | {'precision': 0.3645833333333333, 'recall': 0.29411764705882354, 'f1': 0.3255813953488372, 'number': 119} | {'precision': 0.752129471890971, 'recall': 0.8291079812206573, 'f1': 0.7887449754354622, 'number': 1065} | 0.7078 | 0.7888 | 0.7461 | 0.8087 |
67
+ | 0.3798 | 10.0 | 100 | 0.6437 | {'precision': 0.6981541802388708, 'recall': 0.7948084054388134, 'f1': 0.7433526011560695, 'number': 809} | {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} | {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} | 0.7136 | 0.7837 | 0.7470 | 0.8098 |
68
+ | 0.3225 | 11.0 | 110 | 0.6566 | {'precision': 0.6817226890756303, 'recall': 0.8022249690976514, 'f1': 0.7370812038614423, 'number': 809} | {'precision': 0.336, 'recall': 0.35294117647058826, 'f1': 0.3442622950819672, 'number': 119} | {'precision': 0.7593856655290102, 'recall': 0.8356807511737089, 'f1': 0.7957085382208315, 'number': 1065} | 0.7030 | 0.7933 | 0.7454 | 0.8038 |
69
+ | 0.3097 | 12.0 | 120 | 0.6421 | {'precision': 0.6957928802588996, 'recall': 0.7972805933250927, 'f1': 0.7430875576036866, 'number': 809} | {'precision': 0.35, 'recall': 0.35294117647058826, 'f1': 0.35146443514644354, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8356807511737089, 'f1': 0.8010801080108011, 'number': 1065} | 0.7155 | 0.7913 | 0.7515 | 0.8177 |
70
+ | 0.2916 | 13.0 | 130 | 0.6515 | {'precision': 0.7035010940919038, 'recall': 0.7948084054388134, 'f1': 0.7463726059199072, 'number': 809} | {'precision': 0.33076923076923076, 'recall': 0.36134453781512604, 'f1': 0.34538152610441764, 'number': 119} | {'precision': 0.7649092480553155, 'recall': 0.8309859154929577, 'f1': 0.7965796579657966, 'number': 1065} | 0.7138 | 0.7883 | 0.7492 | 0.8154 |
71
+ | 0.2707 | 14.0 | 140 | 0.6557 | {'precision': 0.7016393442622951, 'recall': 0.7935723114956736, 'f1': 0.7447795823665894, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.36134453781512604, 'f1': 0.34677419354838707, 'number': 119} | {'precision': 0.7688966116420504, 'recall': 0.8309859154929577, 'f1': 0.7987364620938627, 'number': 1065} | 0.7153 | 0.7878 | 0.7498 | 0.8146 |
72
+ | 0.2729 | 15.0 | 150 | 0.6573 | {'precision': 0.7060773480662983, 'recall': 0.7898640296662547, 'f1': 0.7456242707117853, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119} | {'precision': 0.7687661777394306, 'recall': 0.8366197183098592, 'f1': 0.8012589928057554, 'number': 1065} | 0.7168 | 0.7898 | 0.7515 | 0.8172 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.40.1
78
+ - Pytorch 2.3.0+cpu
79
+ - Datasets 2.19.0
80
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1714647793.DESKTOP-GACPI3E.7908.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c348416e5fe5add67b602efa79f19dc6401cddeea85e380a08ac2de5e6eb6bf
3
- size 14778
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a17c53b3225bb4455586b756cd0053f1c1c12586803589fbcef845ad6ac6f04d
3
+ size 15847
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:227f0362a6a4b787022c9fa41c65c3c54cf3eaca3569a37cea979b10b30670f8
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:716b488e39de928ec2ecf6a4eb49093472ac1dd34f36eb2520b06ac9d511ae0f
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff