metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Action_model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8066666666666666
Action_model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6526
- Accuracy: 0.8067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1323 | 0.32 | 100 | 1.0434 | 0.7543 |
0.7842 | 0.64 | 200 | 0.7772 | 0.7810 |
0.6174 | 0.96 | 300 | 0.7121 | 0.7848 |
0.5362 | 1.27 | 400 | 0.7486 | 0.7724 |
0.4918 | 1.59 | 500 | 0.6675 | 0.8029 |
0.4346 | 1.91 | 600 | 0.6526 | 0.8067 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2