|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-18 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Action_agent_small_34_class |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.09523809523809523 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Action_agent_small_34_class |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Accuracy: 0.0952 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.0 | 0.32 | 100 | nan | 0.0952 | |
|
| 0.0 | 0.64 | 200 | nan | 0.0952 | |
|
| 0.0 | 0.96 | 300 | nan | 0.0952 | |
|
| 0.0 | 1.27 | 400 | nan | 0.0952 | |
|
| 0.0 | 1.59 | 500 | nan | 0.0952 | |
|
| 0.0 | 1.91 | 600 | nan | 0.0952 | |
|
| 0.0 | 2.23 | 700 | nan | 0.0952 | |
|
| 0.0 | 2.55 | 800 | nan | 0.0952 | |
|
| 0.0 | 2.87 | 900 | nan | 0.0952 | |
|
| 0.0 | 3.18 | 1000 | nan | 0.0952 | |
|
| 0.0 | 3.5 | 1100 | nan | 0.0952 | |
|
| 0.0 | 3.82 | 1200 | nan | 0.0952 | |
|
| 0.0 | 4.14 | 1300 | nan | 0.0952 | |
|
| 0.0 | 4.46 | 1400 | nan | 0.0952 | |
|
| 0.0 | 4.78 | 1500 | nan | 0.0952 | |
|
| 0.0 | 5.1 | 1600 | nan | 0.0952 | |
|
| 0.0 | 5.41 | 1700 | nan | 0.0952 | |
|
| 0.0 | 5.73 | 1800 | nan | 0.0952 | |
|
| 0.0 | 6.05 | 1900 | nan | 0.0952 | |
|
| 0.0 | 6.37 | 2000 | nan | 0.0952 | |
|
| 0.0 | 6.69 | 2100 | nan | 0.0952 | |
|
| 0.0 | 7.01 | 2200 | nan | 0.0952 | |
|
| 0.0 | 7.32 | 2300 | nan | 0.0952 | |
|
| 0.0 | 7.64 | 2400 | nan | 0.0952 | |
|
| 0.0 | 7.96 | 2500 | nan | 0.0952 | |
|
| 0.0 | 8.28 | 2600 | nan | 0.0952 | |
|
| 0.0 | 8.6 | 2700 | nan | 0.0952 | |
|
| 0.0 | 8.92 | 2800 | nan | 0.0952 | |
|
| 0.0 | 9.24 | 2900 | nan | 0.0952 | |
|
| 0.0 | 9.55 | 3000 | nan | 0.0952 | |
|
| 0.0 | 9.87 | 3100 | nan | 0.0952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|