File size: 2,411 Bytes
4de24bc 79d52a4 4de24bc 21701a0 394661e 4de24bc 8ed7e33 4de24bc 8ed7e33 21701a0 270dd02 7adb8f7 4de24bc 560e03d 5f5aca0 4de24bc 5f5aca0 4de24bc 21701a0 394661e 270dd02 21701a0 4de24bc e4e20e3 4de24bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: VogagenRelation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VogagenRelation
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6952
- Accuracy: 0.5
- Precision: 0.5
- Recall: 1.0
- F1: 0.6667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 0.21 | 100 | 0.6928 | 0.5 | 0.5 | 1.0 | 0.6667 |
| No log | 0.42 | 200 | 0.7024 | 0.5 | 0.0 | 0.0 | 0.0 |
| No log | 0.62 | 300 | 0.7194 | 0.5 | 0.0 | 0.0 | 0.0 |
| No log | 0.83 | 400 | 0.6944 | 0.4992 | 0.0 | 0.0 | 0.0 |
| 0.6974 | 1.04 | 500 | 0.6973 | 0.5 | 0.5 | 1.0 | 0.6667 |
| 0.6974 | 1.25 | 600 | 0.7078 | 0.5 | 0.5 | 1.0 | 0.6667 |
| 0.6974 | 1.46 | 700 | 0.6945 | 0.5 | 0.5 | 1.0 | 0.6667 |
| 0.6974 | 1.66 | 800 | 0.6942 | 0.5 | 0.5 | 1.0 | 0.6667 |
| 0.6974 | 1.87 | 900 | 0.6945 | 0.5 | 0.5 | 1.0 | 0.6667 |
| 0.6962 | 2.08 | 1000 | 0.6932 | 0.4992 | 0.4 | 0.0031 | 0.0062 |
| 0.6962 | 2.29 | 1100 | 0.6952 | 0.5 | 0.5 | 1.0 | 0.6667 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|