Upload tdd_scheduler.py
Browse files- tdd_scheduler.py +515 -0
tdd_scheduler.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import TCDScheduler, DPMSolverSinglestepScheduler
|
2 |
+
from diffusers.schedulers.scheduling_tcd import *
|
3 |
+
from diffusers.schedulers.scheduling_dpmsolver_singlestep import *
|
4 |
+
|
5 |
+
class TDDScheduler(DPMSolverSinglestepScheduler):
|
6 |
+
@register_to_config
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
num_train_timesteps: int = 1000,
|
10 |
+
beta_start: float = 0.0001,
|
11 |
+
beta_end: float = 0.02,
|
12 |
+
beta_schedule: str = "linear",
|
13 |
+
trained_betas: Optional[np.ndarray] = None,
|
14 |
+
solver_order: int = 1,
|
15 |
+
prediction_type: str = "epsilon",
|
16 |
+
thresholding: bool = False,
|
17 |
+
dynamic_thresholding_ratio: float = 0.995,
|
18 |
+
sample_max_value: float = 1.0,
|
19 |
+
algorithm_type: str = "dpmsolver++",
|
20 |
+
solver_type: str = "midpoint",
|
21 |
+
lower_order_final: bool = False,
|
22 |
+
use_karras_sigmas: Optional[bool] = False,
|
23 |
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
24 |
+
lambda_min_clipped: float = -float("inf"),
|
25 |
+
variance_type: Optional[str] = None,
|
26 |
+
tdd_train_step: int = 250,
|
27 |
+
special_jump: bool = False,
|
28 |
+
t_l: int = -1
|
29 |
+
):
|
30 |
+
self.t_l = t_l
|
31 |
+
self.special_jump = special_jump
|
32 |
+
self.tdd_train_step = tdd_train_step
|
33 |
+
if algorithm_type == "dpmsolver":
|
34 |
+
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
35 |
+
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)
|
36 |
+
|
37 |
+
if trained_betas is not None:
|
38 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
39 |
+
elif beta_schedule == "linear":
|
40 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
41 |
+
elif beta_schedule == "scaled_linear":
|
42 |
+
# this schedule is very specific to the latent diffusion model.
|
43 |
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
44 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
45 |
+
# Glide cosine schedule
|
46 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
47 |
+
else:
|
48 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
49 |
+
|
50 |
+
self.alphas = 1.0 - self.betas
|
51 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
52 |
+
# Currently we only support VP-type noise schedule
|
53 |
+
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
54 |
+
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
55 |
+
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
|
56 |
+
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
|
57 |
+
|
58 |
+
# standard deviation of the initial noise distribution
|
59 |
+
self.init_noise_sigma = 1.0
|
60 |
+
|
61 |
+
# settings for DPM-Solver
|
62 |
+
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
|
63 |
+
if algorithm_type == "deis":
|
64 |
+
self.register_to_config(algorithm_type="dpmsolver++")
|
65 |
+
else:
|
66 |
+
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
67 |
+
if solver_type not in ["midpoint", "heun"]:
|
68 |
+
if solver_type in ["logrho", "bh1", "bh2"]:
|
69 |
+
self.register_to_config(solver_type="midpoint")
|
70 |
+
else:
|
71 |
+
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
72 |
+
|
73 |
+
if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
|
74 |
+
raise ValueError(
|
75 |
+
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
|
76 |
+
)
|
77 |
+
|
78 |
+
# setable values
|
79 |
+
self.num_inference_steps = None
|
80 |
+
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
81 |
+
self.timesteps = torch.from_numpy(timesteps)
|
82 |
+
self.model_outputs = [None] * solver_order
|
83 |
+
self.sample = None
|
84 |
+
self.order_list = self.get_order_list(num_train_timesteps)
|
85 |
+
self._step_index = None
|
86 |
+
self._begin_index = None
|
87 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
88 |
+
|
89 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
90 |
+
self.num_inference_steps = num_inference_steps
|
91 |
+
# Clipping the minimum of all lambda(t) for numerical stability.
|
92 |
+
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
|
93 |
+
#original_steps = self.config.original_inference_steps
|
94 |
+
if True:
|
95 |
+
original_steps=self.tdd_train_step
|
96 |
+
k = 1000 / original_steps
|
97 |
+
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1
|
98 |
+
else:
|
99 |
+
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps))))
|
100 |
+
# TCD Inference Steps Schedule
|
101 |
+
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy()
|
102 |
+
# Select (approximately) evenly spaced indices from tcd_origin_timesteps.
|
103 |
+
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False)
|
104 |
+
inference_indices = np.floor(inference_indices).astype(np.int64)
|
105 |
+
timesteps = tcd_origin_timesteps[inference_indices]
|
106 |
+
if self.special_jump:
|
107 |
+
if self.tdd_train_step == 50:
|
108 |
+
#timesteps = np.array([999., 879., 759., 499., 259.])
|
109 |
+
print(timesteps)
|
110 |
+
elif self.tdd_train_step == 250:
|
111 |
+
if num_inference_steps == 5:
|
112 |
+
timesteps = np.array([999., 875., 751., 499., 251.])
|
113 |
+
elif num_inference_steps == 6:
|
114 |
+
timesteps = np.array([999., 875., 751., 627., 499., 251.])
|
115 |
+
elif num_inference_steps == 7:
|
116 |
+
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.])
|
117 |
+
|
118 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
119 |
+
if self.config.use_karras_sigmas:
|
120 |
+
log_sigmas = np.log(sigmas)
|
121 |
+
sigmas = np.flip(sigmas).copy()
|
122 |
+
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
123 |
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
124 |
+
else:
|
125 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
126 |
+
|
127 |
+
if self.config.final_sigmas_type == "sigma_min":
|
128 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
129 |
+
elif self.config.final_sigmas_type == "zero":
|
130 |
+
sigma_last = 0
|
131 |
+
else:
|
132 |
+
raise ValueError(
|
133 |
+
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
|
134 |
+
)
|
135 |
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
136 |
+
|
137 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
138 |
+
|
139 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
|
140 |
+
self.model_outputs = [None] * self.config.solver_order
|
141 |
+
self.sample = None
|
142 |
+
|
143 |
+
if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
|
144 |
+
logger.warning(
|
145 |
+
"Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
|
146 |
+
)
|
147 |
+
self.register_to_config(lower_order_final=True)
|
148 |
+
|
149 |
+
if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
|
150 |
+
logger.warning(
|
151 |
+
" `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
|
152 |
+
)
|
153 |
+
self.register_to_config(lower_order_final=True)
|
154 |
+
|
155 |
+
self.order_list = self.get_order_list(num_inference_steps)
|
156 |
+
|
157 |
+
# add an index counter for schedulers that allow duplicated timesteps
|
158 |
+
self._step_index = None
|
159 |
+
self._begin_index = None
|
160 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
161 |
+
|
162 |
+
def set_timesteps_s(self, eta: float = 0.0):
|
163 |
+
# Clipping the minimum of all lambda(t) for numerical stability.
|
164 |
+
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
|
165 |
+
num_inference_steps = self.num_inference_steps
|
166 |
+
device = self.timesteps.device
|
167 |
+
if True:
|
168 |
+
original_steps=self.tdd_train_step
|
169 |
+
k = 1000 / original_steps
|
170 |
+
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1
|
171 |
+
else:
|
172 |
+
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps))))
|
173 |
+
# TCD Inference Steps Schedule
|
174 |
+
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy()
|
175 |
+
# Select (approximately) evenly spaced indices from tcd_origin_timesteps.
|
176 |
+
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False)
|
177 |
+
inference_indices = np.floor(inference_indices).astype(np.int64)
|
178 |
+
timesteps = tcd_origin_timesteps[inference_indices]
|
179 |
+
if self.special_jump:
|
180 |
+
if self.tdd_train_step == 50:
|
181 |
+
timesteps = np.array([999., 879., 759., 499., 259.])
|
182 |
+
elif self.tdd_train_step == 250:
|
183 |
+
if num_inference_steps == 5:
|
184 |
+
timesteps = np.array([999., 875., 751., 499., 251.])
|
185 |
+
elif num_inference_steps == 6:
|
186 |
+
timesteps = np.array([999., 875., 751., 627., 499., 251.])
|
187 |
+
elif num_inference_steps == 7:
|
188 |
+
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.])
|
189 |
+
|
190 |
+
timesteps_s = np.floor((1 - eta) * timesteps).astype(np.int64)
|
191 |
+
|
192 |
+
sigmas_s = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
193 |
+
if self.config.use_karras_sigmas:
|
194 |
+
print("have not write")
|
195 |
+
pass
|
196 |
+
else:
|
197 |
+
sigmas_s = np.interp(timesteps_s, np.arange(0, len(sigmas_s)), sigmas_s)
|
198 |
+
|
199 |
+
if self.config.final_sigmas_type == "sigma_min":
|
200 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
201 |
+
elif self.config.final_sigmas_type == "zero":
|
202 |
+
sigma_last = 0
|
203 |
+
else:
|
204 |
+
raise ValueError(
|
205 |
+
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
|
206 |
+
)
|
207 |
+
|
208 |
+
sigmas_s = np.concatenate([sigmas_s, [sigma_last]]).astype(np.float32)
|
209 |
+
self.sigmas_s = torch.from_numpy(sigmas_s).to(device=device)
|
210 |
+
self.timesteps_s = torch.from_numpy(timesteps_s).to(device=device, dtype=torch.int64)
|
211 |
+
|
212 |
+
def step(
|
213 |
+
self,
|
214 |
+
model_output: torch.FloatTensor,
|
215 |
+
timestep: int,
|
216 |
+
sample: torch.FloatTensor,
|
217 |
+
eta: float,
|
218 |
+
generator: Optional[torch.Generator] = None,
|
219 |
+
return_dict: bool = True,
|
220 |
+
) -> Union[SchedulerOutput, Tuple]:
|
221 |
+
if self.num_inference_steps is None:
|
222 |
+
raise ValueError(
|
223 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
224 |
+
)
|
225 |
+
|
226 |
+
if self.step_index is None:
|
227 |
+
self._init_step_index(timestep)
|
228 |
+
|
229 |
+
if self.step_index == 0:
|
230 |
+
self.set_timesteps_s(eta)
|
231 |
+
|
232 |
+
model_output = self.convert_model_output(model_output, sample=sample)
|
233 |
+
for i in range(self.config.solver_order - 1):
|
234 |
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
235 |
+
self.model_outputs[-1] = model_output
|
236 |
+
|
237 |
+
order = self.order_list[self.step_index]
|
238 |
+
|
239 |
+
# For img2img denoising might start with order>1 which is not possible
|
240 |
+
# In this case make sure that the first two steps are both order=1
|
241 |
+
while self.model_outputs[-order] is None:
|
242 |
+
order -= 1
|
243 |
+
|
244 |
+
# For single-step solvers, we use the initial value at each time with order = 1.
|
245 |
+
if order == 1:
|
246 |
+
self.sample = sample
|
247 |
+
|
248 |
+
prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order)
|
249 |
+
|
250 |
+
if eta > 0:
|
251 |
+
if self.step_index != self.num_inference_steps - 1:
|
252 |
+
|
253 |
+
alpha_prod_s = self.alphas_cumprod[self.timesteps_s[self.step_index + 1]]
|
254 |
+
alpha_prod_t_prev = self.alphas_cumprod[self.timesteps[self.step_index + 1]]
|
255 |
+
|
256 |
+
noise = randn_tensor(
|
257 |
+
model_output.shape, generator=generator, device=model_output.device, dtype=prev_sample.dtype
|
258 |
+
)
|
259 |
+
prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * prev_sample + (
|
260 |
+
1 - alpha_prod_t_prev / alpha_prod_s
|
261 |
+
).sqrt() * noise
|
262 |
+
|
263 |
+
# upon completion increase step index by one
|
264 |
+
self._step_index += 1
|
265 |
+
|
266 |
+
if not return_dict:
|
267 |
+
return (prev_sample,)
|
268 |
+
|
269 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
270 |
+
|
271 |
+
def dpm_solver_first_order_update(
|
272 |
+
self,
|
273 |
+
model_output: torch.FloatTensor,
|
274 |
+
*args,
|
275 |
+
sample: torch.FloatTensor = None,
|
276 |
+
**kwargs,
|
277 |
+
) -> torch.FloatTensor:
|
278 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
279 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
280 |
+
if sample is None:
|
281 |
+
if len(args) > 2:
|
282 |
+
sample = args[2]
|
283 |
+
else:
|
284 |
+
raise ValueError(" missing `sample` as a required keyward argument")
|
285 |
+
if timestep is not None:
|
286 |
+
deprecate(
|
287 |
+
"timesteps",
|
288 |
+
"1.0.0",
|
289 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
290 |
+
)
|
291 |
+
|
292 |
+
if prev_timestep is not None:
|
293 |
+
deprecate(
|
294 |
+
"prev_timestep",
|
295 |
+
"1.0.0",
|
296 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
297 |
+
)
|
298 |
+
sigma_t, sigma_s = self.sigmas_s[self.step_index + 1], self.sigmas[self.step_index]
|
299 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
300 |
+
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
301 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
302 |
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
303 |
+
h = lambda_t - lambda_s
|
304 |
+
if self.config.algorithm_type == "dpmsolver++":
|
305 |
+
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
|
306 |
+
elif self.config.algorithm_type == "dpmsolver":
|
307 |
+
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
|
308 |
+
return x_t
|
309 |
+
|
310 |
+
def singlestep_dpm_solver_second_order_update(
|
311 |
+
self,
|
312 |
+
model_output_list: List[torch.FloatTensor],
|
313 |
+
*args,
|
314 |
+
sample: torch.FloatTensor = None,
|
315 |
+
**kwargs,
|
316 |
+
) -> torch.FloatTensor:
|
317 |
+
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
318 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
319 |
+
if sample is None:
|
320 |
+
if len(args) > 2:
|
321 |
+
sample = args[2]
|
322 |
+
else:
|
323 |
+
raise ValueError(" missing `sample` as a required keyward argument")
|
324 |
+
if timestep_list is not None:
|
325 |
+
deprecate(
|
326 |
+
"timestep_list",
|
327 |
+
"1.0.0",
|
328 |
+
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
329 |
+
)
|
330 |
+
|
331 |
+
if prev_timestep is not None:
|
332 |
+
deprecate(
|
333 |
+
"prev_timestep",
|
334 |
+
"1.0.0",
|
335 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
336 |
+
)
|
337 |
+
sigma_t, sigma_s0, sigma_s1 = (
|
338 |
+
self.sigmas_s[self.step_index + 1],
|
339 |
+
self.sigmas[self.step_index],
|
340 |
+
self.sigmas[self.step_index - 1],
|
341 |
+
)
|
342 |
+
|
343 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
344 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
345 |
+
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
346 |
+
|
347 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
348 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
349 |
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
350 |
+
|
351 |
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
352 |
+
|
353 |
+
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
|
354 |
+
r0 = h_0 / h
|
355 |
+
D0, D1 = m1, (1.0 / r0) * (m0 - m1)
|
356 |
+
if self.config.algorithm_type == "dpmsolver++":
|
357 |
+
# See https://arxiv.org/abs/2211.01095 for detailed derivations
|
358 |
+
if self.config.solver_type == "midpoint":
|
359 |
+
x_t = (
|
360 |
+
(sigma_t / sigma_s1) * sample
|
361 |
+
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
|
362 |
+
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
|
363 |
+
)
|
364 |
+
elif self.config.solver_type == "heun":
|
365 |
+
x_t = (
|
366 |
+
(sigma_t / sigma_s1) * sample
|
367 |
+
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
|
368 |
+
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
|
369 |
+
)
|
370 |
+
elif self.config.algorithm_type == "dpmsolver":
|
371 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
372 |
+
if self.config.solver_type == "midpoint":
|
373 |
+
x_t = (
|
374 |
+
(alpha_t / alpha_s1) * sample
|
375 |
+
- (sigma_t * (torch.exp(h) - 1.0)) * D0
|
376 |
+
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
|
377 |
+
)
|
378 |
+
elif self.config.solver_type == "heun":
|
379 |
+
x_t = (
|
380 |
+
(alpha_t / alpha_s1) * sample
|
381 |
+
- (sigma_t * (torch.exp(h) - 1.0)) * D0
|
382 |
+
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
|
383 |
+
)
|
384 |
+
return x_t
|
385 |
+
|
386 |
+
def singlestep_dpm_solver_update(
|
387 |
+
self,
|
388 |
+
model_output_list: List[torch.FloatTensor],
|
389 |
+
*args,
|
390 |
+
sample: torch.FloatTensor = None,
|
391 |
+
order: int = None,
|
392 |
+
**kwargs,
|
393 |
+
) -> torch.FloatTensor:
|
394 |
+
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
395 |
+
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
396 |
+
if sample is None:
|
397 |
+
if len(args) > 2:
|
398 |
+
sample = args[2]
|
399 |
+
else:
|
400 |
+
raise ValueError(" missing`sample` as a required keyward argument")
|
401 |
+
if order is None:
|
402 |
+
if len(args) > 3:
|
403 |
+
order = args[3]
|
404 |
+
else:
|
405 |
+
raise ValueError(" missing `order` as a required keyward argument")
|
406 |
+
if timestep_list is not None:
|
407 |
+
deprecate(
|
408 |
+
"timestep_list",
|
409 |
+
"1.0.0",
|
410 |
+
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
411 |
+
)
|
412 |
+
|
413 |
+
if prev_timestep is not None:
|
414 |
+
deprecate(
|
415 |
+
"prev_timestep",
|
416 |
+
"1.0.0",
|
417 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
418 |
+
)
|
419 |
+
|
420 |
+
if order == 1:
|
421 |
+
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
|
422 |
+
elif order == 2:
|
423 |
+
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
|
424 |
+
else:
|
425 |
+
raise ValueError(f"Order must be 1, 2, got {order}")
|
426 |
+
|
427 |
+
def convert_model_output(
|
428 |
+
self,
|
429 |
+
model_output: torch.FloatTensor,
|
430 |
+
*args,
|
431 |
+
sample: torch.FloatTensor = None,
|
432 |
+
**kwargs,
|
433 |
+
) -> torch.FloatTensor:
|
434 |
+
"""
|
435 |
+
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
436 |
+
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
437 |
+
integral of the data prediction model.
|
438 |
+
|
439 |
+
<Tip>
|
440 |
+
|
441 |
+
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
442 |
+
prediction and data prediction models.
|
443 |
+
|
444 |
+
</Tip>
|
445 |
+
|
446 |
+
Args:
|
447 |
+
model_output (`torch.FloatTensor`):
|
448 |
+
The direct output from the learned diffusion model.
|
449 |
+
sample (`torch.FloatTensor`):
|
450 |
+
A current instance of a sample created by the diffusion process.
|
451 |
+
|
452 |
+
Returns:
|
453 |
+
`torch.FloatTensor`:
|
454 |
+
The converted model output.
|
455 |
+
"""
|
456 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
457 |
+
if sample is None:
|
458 |
+
if len(args) > 1:
|
459 |
+
sample = args[1]
|
460 |
+
else:
|
461 |
+
raise ValueError("missing `sample` as a required keyward argument")
|
462 |
+
if timestep is not None:
|
463 |
+
deprecate(
|
464 |
+
"timesteps",
|
465 |
+
"1.0.0",
|
466 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
467 |
+
)
|
468 |
+
# DPM-Solver++ needs to solve an integral of the data prediction model.
|
469 |
+
if self.config.algorithm_type == "dpmsolver++":
|
470 |
+
if self.config.prediction_type == "epsilon":
|
471 |
+
# DPM-Solver and DPM-Solver++ only need the "mean" output.
|
472 |
+
if self.config.variance_type in ["learned_range"]:
|
473 |
+
model_output = model_output[:, :3]
|
474 |
+
sigma = self.sigmas[self.step_index]
|
475 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
476 |
+
x0_pred = (sample - sigma_t * model_output) / alpha_t
|
477 |
+
elif self.config.prediction_type == "sample":
|
478 |
+
x0_pred = model_output
|
479 |
+
elif self.config.prediction_type == "v_prediction":
|
480 |
+
sigma = self.sigmas[self.step_index]
|
481 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
482 |
+
x0_pred = alpha_t * sample - sigma_t * model_output
|
483 |
+
else:
|
484 |
+
raise ValueError(
|
485 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
486 |
+
" `v_prediction` for the DPMSolverSinglestepScheduler."
|
487 |
+
)
|
488 |
+
|
489 |
+
if self.step_index <= self.t_l:
|
490 |
+
if self.config.thresholding:
|
491 |
+
x0_pred = self._threshold_sample(x0_pred)
|
492 |
+
|
493 |
+
return x0_pred
|
494 |
+
# DPM-Solver needs to solve an integral of the noise prediction model.
|
495 |
+
elif self.config.algorithm_type == "dpmsolver":
|
496 |
+
if self.config.prediction_type == "epsilon":
|
497 |
+
# DPM-Solver and DPM-Solver++ only need the "mean" output.
|
498 |
+
if self.config.variance_type in ["learned_range"]:
|
499 |
+
model_output = model_output[:, :3]
|
500 |
+
return model_output
|
501 |
+
elif self.config.prediction_type == "sample":
|
502 |
+
sigma = self.sigmas[self.step_index]
|
503 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
504 |
+
epsilon = (sample - alpha_t * model_output) / sigma_t
|
505 |
+
return epsilon
|
506 |
+
elif self.config.prediction_type == "v_prediction":
|
507 |
+
sigma = self.sigmas[self.step_index]
|
508 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
509 |
+
epsilon = alpha_t * model_output + sigma_t * sample
|
510 |
+
return epsilon
|
511 |
+
else:
|
512 |
+
raise ValueError(
|
513 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
514 |
+
" `v_prediction` for the DPMSolverSinglestepScheduler."
|
515 |
+
)
|