Text-to-Image
Diffusers
English
RedAIGC xiaopolu commited on
Commit
1a10df7
·
verified ·
1 Parent(s): 800ec62

Update README.md (#2)

Browse files

- Update README.md (6cf8a47a01b12f6f99c8babae8bfcb1501c861b1)


Co-authored-by: kuo <xiaopolu@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +32 -10
README.md CHANGED
@@ -23,17 +23,28 @@ Target-Driven Distillation: Consistency Distillation with Target Timestep Select
23
  Samples generated by TDD-distilled SDXL, with only 4--8 steps.
24
  </div>
25
 
26
- ## Update
27
- [2024.09.20]:Upload the TDD LoRA weights of FLUX-TDD-BETA(4-8-steps)
28
- [2024.08.25]:Upload the TDD LoRA weights of SVD
29
- [2024.08.22]:Upload the TDD LoRA weights of Stable Diffusion XL, YamerMIX and RealVisXL-V4.0, fast text-to-image generation.
30
- - sdxl_tdd_lora_weights.safetensors
31
- - yamermix_tdd_lora_weights.safetensors
32
- - realvis_tdd_sdxl_lora_weights.safetensors
33
-
34
- Thanks to [Yamer](https://civitai.com/user/Yamer) and [SG_161222](https://civitai.com/user/SG_161222) for developing [YamerMIX](https://civitai.com/models/84040?modelVersionId=395107) and [RealVisXL V4.0](https://civitai.com/models/139562/realvisxl-v40) respectively.
35
- ## Usage
 
 
 
 
 
 
 
 
 
 
36
 
 
37
  You can directly download the model in this repository.
38
  You also can download the model in python script:
39
 
@@ -71,6 +82,17 @@ image = pipe(
71
  image.save("tdd.png")
72
  ```
73
 
 
 
 
 
 
 
 
 
 
 
 
74
  ## Introduction
75
 
76
  Target-Driven Distillation (TDD) features three key designs, that differ from previous consistency distillation methods.
 
23
  Samples generated by TDD-distilled SDXL, with only 4--8 steps.
24
  </div>
25
 
26
+ ## Usage FLUX
27
+ ```python
28
+ from huggingface_hub import hf_hub_download
29
+ from diffusers import FluxPipeline
30
+
31
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
32
+ pipe.load_lora_weights(hf_hub_download("RED-AIGC/TDD", "TDD-FLUX.1-dev-lora-beta.safetensors"))
33
+ pipe.fuse_lora(lora_scale=0.125)
34
+ pipe.to("cuda")
35
+
36
+ image_flux = pipe(
37
+ prompt=[prompt],
38
+ generator=torch.Generator().manual_seed(int(3413)),
39
+ num_inference_steps=8,
40
+ guidance_scale=2.0,
41
+ height=1024,
42
+ width=1024,
43
+ max_sequence_length=256
44
+ ).images[0]
45
+ ```
46
 
47
+ ## Usage SDXL
48
  You can directly download the model in this repository.
49
  You also can download the model in python script:
50
 
 
82
  image.save("tdd.png")
83
  ```
84
 
85
+ ## Update
86
+ [2024.09.20]:Upload the TDD LoRA weights of FLUX-TDD-BETA(4-8-steps)
87
+ [2024.08.25]:Upload the TDD LoRA weights of SVD
88
+ [2024.08.22]:Upload the TDD LoRA weights of Stable Diffusion XL, YamerMIX and RealVisXL-V4.0, fast text-to-image generation.
89
+ - sdxl_tdd_lora_weights.safetensors
90
+ - yamermix_tdd_lora_weights.safetensors
91
+ - realvis_tdd_sdxl_lora_weights.safetensors
92
+
93
+ Thanks to [Yamer](https://civitai.com/user/Yamer) and [SG_161222](https://civitai.com/user/SG_161222) for developing [YamerMIX](https://civitai.com/models/84040?modelVersionId=395107) and [RealVisXL V4.0](https://civitai.com/models/139562/realvisxl-v40) respectively.
94
+
95
+
96
  ## Introduction
97
 
98
  Target-Driven Distillation (TDD) features three key designs, that differ from previous consistency distillation methods.