|
|
|
|
|
|
|
|
|
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class QWenConfig(PretrainedConfig): |
|
model_type = "qwen" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"max_position_embeddings": "n_positions", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=151851, |
|
n_embd=4096, |
|
n_layer=32, |
|
n_head=32, |
|
n_inner=None, |
|
embd_pdrop=0.0, |
|
attn_pdrop=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
eos_token_id=151643, |
|
apply_residual_connection_post_layernorm=False, |
|
bf16=True, |
|
kv_channels=128, |
|
rotary_pct=1.0, |
|
rotary_emb_base=10000, |
|
use_dynamic_ntk=False, |
|
use_logn_attn=False, |
|
use_flash_attn=True, |
|
ffn_hidden_size=22016, |
|
no_bias=True, |
|
tie_word_embeddings=False, |
|
**kwargs, |
|
): |
|
self.eos_token_id = eos_token_id |
|
super().__init__( |
|
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
self.apply_residual_connection_post_layernorm = ( |
|
apply_residual_connection_post_layernorm |
|
) |
|
self.bf16 = bf16 |
|
self.kv_channels = kv_channels |
|
self.rotary_pct = rotary_pct |
|
self.rotary_emb_base = rotary_emb_base |
|
self.use_dynamic_ntk = use_dynamic_ntk |
|
self.use_logn_attn = use_logn_attn |
|
self.use_flash_attn = use_flash_attn |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.no_bias = no_bias |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|