File size: 1,543 Bytes
38ded23 8bf8f55 74f0c73 38ded23 8bf8f55 74f0c73 8bf8f55 74f0c73 8bf8f55 74f0c73 38ded23 8bf8f55 38ded23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
base_model: google/pegasus-large
model-index:
- name: fine-tune-Pegasus
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: xsum
type: xsum
args: default
metrics:
- type: rouge
value: 17.993
name: Rouge1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tune-Pegasus
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3242
- Rouge1: 17.993
- Rouge2: 2.9392
- Rougel: 12.313
- Rougelsum: 13.3091
- Gen Len: 67.0552
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.35e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|