File size: 11,539 Bytes
431e767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import tempfile
import json
import logging
import time
from flask import Flask, request, jsonify
from werkzeug.utils import secure_filename
import pdfplumber
from pdf2image import convert_from_path
from PIL import Image
import cv2
import numpy as np
import io
import pandas as pd
try:
    from docx import Document
except ImportError:
    Document = None  # Handle case where python-docx is not installed
import openpyxl
import easyocr

app = Flask(__name__)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Configuration
ALLOWED_EXTENSIONS = {'pdf', 'docx', 'txt', 'csv', 'xlsx', 'xls', 'jpg', 'jpeg', 'png'}
UPLOAD_FOLDER = tempfile.mkdtemp()
OUTPUT_FOLDER = os.path.join(os.getcwd(), 'extracted_data')
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB limit

# API Key Configuration
API_KEYS = {
    "your_api_key_1": "client1",
    "your_api_key_2": "client2"
}

# Initialize EasyOCR readers with GPU support
reader_en_hi = easyocr.Reader(['en', 'hi'], gpu=True)
reader_en_bn = easyocr.Reader(['en', 'bn'], gpu=True)
reader_en_ur = easyocr.Reader(['en', 'ur'], gpu=True)

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def validate_api_key():
    """Check if the provided API key is valid"""
    api_key = request.headers.get('X-API-KEY')
    if not api_key or api_key not in API_KEYS:
        return False
    return True

def preprocess_image(image):
    """Enhance image for better OCR results"""
    try:
        img = np.array(image)
        if len(img.shape) == 2:  # Grayscale
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
        elif img.shape[2] == 4:  # RGBA
            img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)

        # Convert to grayscale for processing
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        # Apply adaptive thresholding
        processed = cv2.adaptiveThreshold(
            gray, 255,
            cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
            cv2.THRESH_BINARY, 11, 2
        )

        return Image.fromarray(processed)
    except Exception as e:
        logger.error(f"Image preprocessing failed: {str(e)}")
        return image

def extract_text_from_image(image):
    """Extract text from image using EasyOCR"""
    try:
        processed_img = preprocess_image(image)
        result_en_hi = reader_en_hi.readtext(np.array(processed_img))
        result_en_bn = reader_en_bn.readtext(np.array(processed_img))
        result_en_ur = reader_en_ur.readtext(np.array(processed_img))

        text_en_hi = " ".join([text[1] for text in result_en_hi])
        text_en_bn = " ".join([text[1] for text in result_en_bn])
        text_en_ur = " ".join([text[1] for text in result_en_ur])

        return text_en_hi + " " + text_en_bn + " " + text_en_ur
    except Exception as e:
        logger.error(f"OCR extraction failed: {str(e)}")
        return ""

def process_pdf_page(page, page_num, pdf_path):
    """Process a single PDF page with mixed content"""
    result = {
        "page": page_num + 1,
        "native_text": "",
        "image_text": "",
        "type": "mixed"
    }

    # First try to extract native text
    try:
        result["native_text"] = page.extract_text(x_tolerance=1, y_tolerance=1) or ""
    except Exception as e:
        logger.warning(f"Native text extraction failed: {str(e)}")

    # Check if page has images or if native text extraction was insufficient
    if page.images or len(result["native_text"].strip()) < 50:
        try:
            # Convert the entire page to image
            images = convert_from_path(
                pdf_path,
                first_page=page_num+1,
                last_page=page_num+1,
                dpi=300,
                size=(2480, 3508))  # A4 size at 300dpi

            if images:
                # Extract text from the full page image
                full_page_text = extract_text_from_image(images[0])

                # Only use OCR text if we got more content than native extraction
                if len(full_page_text) > len(result["native_text"]):
                    result["image_text"] = full_page_text
                    result["type"] = "ocr_text" if not result["native_text"] else "mixed"

                # Explicit cleanup
                del images
        except Exception as e:
            logger.error(f"Page image processing failed: {str(e)}")

    return result

def process_docx(file_path):
    """Extract text from DOCX file"""
    if Document is None:
        raise ImportError("python-docx package is not installed")

    try:
        doc = Document(file_path)
        text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
        return {
            "content": [{
                "page": 1,
                "text": text,
                "type": "native_text"
            }]
        }
    except Exception as e:
        logger.error(f"DOCX processing failed: {str(e)}")
        raise

def process_txt(file_path):
    """Extract text from TXT file"""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
        return {
            "content": [{
                "page": 1,
                "text": text,
                "type": "native_text"
            }]
        }
    except Exception as e:
        logger.error(f"TXT processing failed: {str(e)}")
        raise

def process_csv(file_path):
    """Extract data from CSV file"""
    try:
        df = pd.read_csv(file_path)
        text = df.to_string(index=False)
        return {
            "content": [{
                "page": 1,
                "text": text,
                "type": "table_data"
            }]
        }
    except Exception as e:
        logger.error(f"CSV processing failed: {str(e)}")
        raise

def process_excel(file_path):
    """Extract data from Excel file (XLSX or XLS)"""
    try:
        text = ""
        if file_path.endswith('.xlsx'):
            wb = openpyxl.load_workbook(file_path)
            for sheet_name in wb.sheetnames:
                sheet = wb[sheet_name]
                text += f"\n\nSheet: {sheet_name}\n"
                for row in sheet.iter_rows(values_only=True):
                    text += "\t".join(str(cell) if cell is not None else "" for cell in row) + "\n"
        else:  # .xls
            df = pd.read_excel(file_path, sheet_name=None)
            for sheet_name, data in df.items():
                text += f"\n\nSheet: {sheet_name}\n{data.to_string(index=False)}\n"

        return {
            "content": [{
                "page": 1,
                "text": text,
                "type": "table_data"
            }]
        }
    except Exception as e:
        logger.error(f"Excel processing failed: {str(e)}")
        raise

def process_image(file_path):
    """Extract text from image file (JPG, JPEG, PNG)"""
    try:
        image = Image.open(file_path)
        text = extract_text_from_image(image)
        return {
            "content": [{
                "page": 1,
                "text": text,
                "type": "ocr_text"
            }]
        }
    except Exception as e:
        logger.error(f"Image processing failed: {str(e)}")
        raise

@app.route('/process', methods=['POST'])
def handle_file():
    # API Key validation
    if not validate_api_key():
        return jsonify({"error": "Invalid or missing API key"}), 401

    if 'file' not in request.files:
        return jsonify({"error": "No file provided"}), 400

    file = request.files['file']
    if not file or file.filename == '':
        return jsonify({"error": "No selected file"}), 400

    if not allowed_file(file.filename):
        return jsonify({"error": "Invalid file type"}), 400

    temp_path = None
    try:
        # Save uploaded file temporarily
        filename = secure_filename(file.filename)
        temp_dir = tempfile.mkdtemp()
        temp_path = os.path.join(temp_dir, filename)
        file.save(temp_path)

        start_time = time.time()
        file_extension = filename.rsplit('.', 1)[1].lower()

        # Process file based on extension
        if file_extension == 'pdf':
            results = []
            with pdfplumber.open(temp_path) as pdf:
                for page_num, page in enumerate(pdf.pages):
                    page_result = process_pdf_page(page, page_num, temp_path)
                    results.append(page_result)

            # Combine results
            combined_text = ""
            for page in results:
                combined_text += page.get("native_text", "") + "\n" + page.get("image_text", "") + "\n"

            response = {
                "metadata": {
                    "filename": filename,
                    "pages": len(results),
                    "processing_time": round(time.time() - start_time, 2),
                    "text_length": len(combined_text)
                },
                "content": results
            }
        elif file_extension == 'docx':
            response = process_docx(temp_path)
            response['metadata'] = {
                "filename": filename,
                "pages": 1,
                "processing_time": round(time.time() - start_time, 2),
                "text_length": len(response['content'][0]['text'])
            }
        elif file_extension == 'txt':
            response = process_txt(temp_path)
            response['metadata'] = {
                "filename": filename,
                "pages": 1,
                "processing_time": round(time.time() - start_time, 2),
                "text_length": len(response['content'][0]['text'])
            }
        elif file_extension == 'csv':
            response = process_csv(temp_path)
            response['metadata'] = {
                "filename": filename,
                "pages": 1,
                "processing_time": round(time.time() - start_time, 2),
                "text_length": len(response['content'][0]['text'])
            }
        elif file_extension in ('xlsx', 'xls'):
            response = process_excel(temp_path)
            response['metadata'] = {
                "filename": filename,
                "pages": 1,
                "processing_time": round(time.time() - start_time, 2),
                "text_length": len(response['content'][0]['text'])
            }
        elif file_extension in ('jpg', 'jpeg', 'png'):
            response = process_image(temp_path)
            response['metadata'] = {
                "filename": filename,
                "pages": 1,
                "processing_time": round(time.time() - start_time, 2),
                "text_length": len(response['content'][0]['text'])
            }
        else:
            return jsonify({"error": "Unsupported file type"}), 400

        return jsonify(response)

    except Exception as e:
        logger.error(f"Processing failed: {str(e)}")
        return jsonify({"error": str(e)}), 500

    finally:
        # Clean up temporary files
        try:
            if temp_path and os.path.exists(temp_path):
                os.remove(temp_path)
            if 'temp_dir' in locals() and os.path.exists(temp_dir):
                os.rmdir(temp_dir)
        except Exception as e:
            logger.error(f"Cleanup failed: {str(e)}")

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=True)