File size: 1,579 Bytes
857863a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: llama2
language:
- hi
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/OpenHathi-7B-Hi-v0.1-Base-GGUF
This is quantized version of [sarvamai/OpenHathi-7B-Hi-v0.1-Base](https://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base) created using llama.cpp
# Original Model Card
This repository is the first model in the OpenHathi series of models that will be released by Sarvam AI. This is a 7B parameter, based on Llama2, trained on Hindi, English, and Hinglish. More details about the model, its training procedure, and evaluations can be found [here](https://www.sarvam.ai/blog/announcing-openhathi-series).
Note: this is a base model and not meant to be used as is. We recommend first finetuning it on task(s) you are interested in.
```
# Usage
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained('sarvamai/OpenHathi-7B-Hi-v0.1-Base')
model = LlamaForCausalLM.from_pretrained('sarvamai/OpenHathi-7B-Hi-v0.1-Base', torch_dtype=torch.bfloat16)
prompt = "मैं एक अच्छा हाथी हूँ"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
|