|
|
|
--- |
|
|
|
library_name: transformers |
|
base_model: FourOhFour/Magic_v2_8B |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs/out |
|
results: [] |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Fatgirl_v2_8B-GGUF |
|
This is quantized version of [FourOhFour/Fatgirl_v2_8B](https://huggingface.co/FourOhFour/Fatgirl_v2_8B) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: FourOhFour/Magic_v2_8B |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned |
|
type: sharegpt |
|
conversation: chatml |
|
- path: ResplendentAI/bluemoon |
|
type: sharegpt |
|
conversation: chatml |
|
- path: openerotica/freedom-rp |
|
type: sharegpt |
|
conversation: chatml |
|
- path: MinervaAI/Aesir-Preview |
|
type: sharegpt |
|
conversation: chatml |
|
- path: anthracite-core/c2_logs_32k_v1.1 |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Nitral-AI/Creative_Writing-ShareGPT |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PJMixers/lodrick-the-lafted_OpusStories-Story2Prompt-ShareGPT |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
|
|
val_set_size: 0.002 |
|
output_dir: ./outputs/out |
|
|
|
adapter: |
|
lora_r: |
|
lora_alpha: |
|
lora_dropout: |
|
lora_target_linear: |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
wandb_project: mini8B |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: mini8B |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 2 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
weight_decay: 0.05 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 2 |
|
|
|
debug: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: <pad> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out |
|
|
|
This model is a fine-tuned version of [FourOhFour/Magic_v2_8B](https://huggingface.co/FourOhFour/Magic_v2_8B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6845 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 58 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.7471 | 0.0034 | 1 | 2.8918 | |
|
| 1.5602 | 0.2507 | 74 | 2.7319 | |
|
| 1.4587 | 0.5015 | 148 | 2.6953 | |
|
| 1.5022 | 0.7522 | 222 | 2.6729 | |
|
| 1.4152 | 1.0030 | 296 | 2.6487 | |
|
| 1.2528 | 1.2501 | 370 | 2.6922 | |
|
| 1.2245 | 1.5002 | 444 | 2.6843 | |
|
| 1.2803 | 1.7503 | 518 | 2.6845 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|
|
|