GGUF
Inference Endpoints
conversational
aashish1904's picture
Upload README.md with huggingface_hub
58e6d95 verified
|
raw
history blame
2.69 kB
---
license: apache-2.0
datasets:
- AuriAetherwiing/Allura
- kalomaze/Opus_Instruct_25k
base_model:
- AuriAetherwiing/Yi-1.5-9B-32K-tokfix
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/EVA-Yi-1.5-9B-32K-V1-GGUF
This is quantized version of [EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1) created using llama.cpp
# Original Model Card
**EVA Yi 1.5 9B v1**
<p>
A RP/storywriting focused model, full-parameter finetune of Yi-1.5-9B-32K on mixture of synthetic and natural data.<br>
A continuation of nothingiisreal's Celeste 1.x series, made to improve stability and versatility, without losing unique, diverse writing style of Celeste.
</p>
<p>
<h3>Quants: (GGUF is not recommended, lcpp breaks tokenizer fix)</h3>
<ul>
<li><a href=https://huggingface.co/bartowski/EVA-Yi-1.5-9B-32K-V1-GGUF>IMatrix GGUF by bartowski</a></li>
<li><a href=https://huggingface.co/mradermacher/EVA-Yi-1.5-9B-32K-V1-GGUF>Static GGUF by Mradermacher</a></li>
<li><a href=https://huggingface.co/bartowski/EVA-Yi-1.5-9B-32K-V1-exl2>EXL2 by bartowski</a></li>
</ul>
We recommend using original BFloat16 weights, quantization seems to affect Yi significantly more than other model architectures.
</p>
<p>
Prompt format is ChatML.<br>
<h3>Recommended sampler values:</h3>
- Temperature: 1
- Min-P: 0.05
<h3>Recommended SillyTavern presets (via CalamitousFelicitousness):</h3>
- [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json)
- [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json)
</p>
<p>
<br>
<h3>
Training data:
</h3>
<ul>
<li>Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's <a href=https://huggingface.co/nothingiisreal/L3.1-70B-Celeste-V0.1-BF16>card</a> for details.</li>
<li>Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.</li></ul>
<h3>
Hardware used:
</h3>
<ul><li>4x3090Ti for 5 days.</li></ul><br>
</p>
Model was trained by Kearm and Auri.
<h4>Special thanks:</h4><ul>
<li>to Lemmy, Gryphe, Kalomaze and Nopm for the data</li>
<li>to ALK, Fizz and CalamitousFelicitousness for Yi tokenizer fix</li>
<li>and to InfermaticAI's community for their continued support for our endeavors</li></ul>