File size: 11,389 Bytes
08894ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
#!/usr/bin/env pwsh
Write-Host "==========================================="
Write-Host "GLEN Full Training on The Vault Dataset"
Write-Host "Processing 34M+ code samples"
Write-Host "==========================================="
# Production parameters
$GPU_MEMORY_THRESHOLD = 0.85
$GPU_CHECK_INTERVAL = 50
$WANDB_PROJECT = "glen-vault-production"
# Training configuration
$PHASE1_EPOCHS = 3
$PHASE2_EPOCHS = 5
$PHASE1_BATCH_SIZE = 32
$PHASE2_BATCH_SIZE = 16
$GRADIENT_ACCUMULATION = 4
$MAX_INPUT_LENGTH = 256
$LEARNING_RATE = 5e-5
Write-Host "π§ Production Configuration:"
Write-Host " - Phase 1 epochs: $PHASE1_EPOCHS"
Write-Host " - Phase 2 epochs: $PHASE2_EPOCHS"
Write-Host " - Phase 1 batch size: $PHASE1_BATCH_SIZE"
Write-Host " - Phase 2 batch size: $PHASE2_BATCH_SIZE"
Write-Host " - Gradient accumulation: $GRADIENT_ACCUMULATION"
Write-Host " - Max input length: $MAX_INPUT_LENGTH"
Write-Host " - Learning rate: $LEARNING_RATE"
Write-Host ""
Write-Host "π‘οΈ Memory Protection:"
Write-Host " - GPU memory threshold: ${GPU_MEMORY_THRESHOLD} (85%)"
Write-Host " - Check interval: ${GPU_CHECK_INTERVAL} steps"
Write-Host " - FP16 training enabled"
Write-Host " - Automatic checkpoint saving on memory limit"
Write-Host ""
# Check prerequisites
Write-Host "π Checking prerequisites..."
# Check if full dataset exists
if (-not (Test-Path "the_vault_dataset")) {
Write-Error "β The Vault dataset not found! Please download and extract to 'the_vault_dataset/'"
Write-Host " Download from: https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/CodeT5-learning-framework/data"
exit 1
}
# Ensure data preprocessing is done for full dataset
Write-Host "Checking full dataset preprocessing..."
if (-not (Test-Path "data/the_vault/DOC_VAULT_train.tsv")) {
Write-Host "π Running full dataset preprocessing (this may take 30-60 minutes)..."
python scripts/preprocess_vault_dataset.py --input_dir the_vault_dataset/ --output_dir data/the_vault/ --full_dataset
if ($LASTEXITCODE -ne 0) {
Write-Error "β Data preprocessing failed!"
exit 1
}
} else {
$train_lines = (Get-Content "data/the_vault/DOC_VAULT_train.tsv").Count
Write-Host "β
Full dataset already preprocessed ($train_lines training samples)"
}
# Check GPU availability
$gpu_count = 0
try {
$gpu_info = nvidia-smi --query-gpu=name --format=csv,noheader,nounits 2>$null
if ($gpu_info) {
$gpu_count = ($gpu_info | Measure-Object).Count
Write-Host "π₯οΈ Detected $gpu_count GPU(s): $($gpu_info -join ', ')"
}
} catch {
Write-Host "β οΈ No GPU detected, will use CPU (training will be much slower)"
}
if ($gpu_count -eq 0) {
Write-Host "β οΈ Warning: Training on CPU will take days/weeks. Consider using GPU."
$response = Read-Host "Continue with CPU training? (y/N)"
if ($response -ne "y" -and $response -ne "Y") {
Write-Host "Training cancelled."
exit 0
}
}
Write-Host ""
Write-Host "=== Phase 1 Training: Document ID Assignment ==="
Write-Host "π― Learning to assign semantic identifiers to code documents"
$PHASE1_OUTPUT = "logs/glen_vault_production/GLEN_P1"
$env:CUDA_VISIBLE_DEVICES = "0"
try {
python examples/glen_phase1/train_glen.py `
--output_dir $PHASE1_OUTPUT `
--model_name_or_path t5-base `
--query_type gtq_doc `
--per_device_train_batch_size $PHASE1_BATCH_SIZE `
--per_device_eval_batch_size 8 `
--gradient_accumulation_steps $GRADIENT_ACCUMULATION `
--learning_rate $LEARNING_RATE `
--dropout_rate 0.1 `
--Rdrop 0.15 `
--aug_query True `
--aug_query_type corrupted_query `
--input_dropout 1 `
--id_class t5_bm25_truncate_3 `
--dataset_name the_vault `
--tree 1 `
--pretrain_decoder True `
--max_input_length $MAX_INPUT_LENGTH `
--val_check_interval 0.1 `
--tie_word_embeddings True `
--decoder_input doc_rep `
--max_output_length 10 `
--num_return_sequences 10 `
--logging_steps 100 `
--eval_steps 1000 `
--save_steps 2000 `
--overwrite_output_dir `
--wandb_tag "phase1_production" `
--project_name $WANDB_PROJECT `
--do_eval True `
--evaluation_strategy steps `
--num_train_epochs $PHASE1_EPOCHS `
--save_strategy steps `
--save_total_limit 5 `
--load_best_model_at_end True `
--metric_for_best_model eval_loss `
--greater_is_better False `
--seed 42 `
--gpu_memory_threshold $GPU_MEMORY_THRESHOLD `
--gpu_check_interval $GPU_CHECK_INTERVAL `
--fp16 True `
--dataloader_num_workers 4 `
--warmup_ratio 0.1
if ($LASTEXITCODE -ne 0) {
throw "Phase 1 training failed!"
}
} catch {
Write-Error "β Phase 1 training failed: $_"
Write-Host "π Check logs in: $PHASE1_OUTPUT"
exit 1
}
Write-Host "β
Phase 1 training completed successfully!"
# Validate Phase 1 checkpoint
if (-not (Test-Path $PHASE1_OUTPUT)) {
Write-Error "β Phase 1 checkpoint not found at $PHASE1_OUTPUT"
exit 1
fi
# Find the best checkpoint
$best_checkpoint = Get-ChildItem -Path $PHASE1_OUTPUT -Directory -Name "checkpoint-*" |
Sort-Object {[int]($_.Split('-')[1])} | Select-Object -Last 1
if ($best_checkpoint) {
Write-Host "π Using Phase 1 checkpoint: $best_checkpoint"
$PHASE1_CKPT = "$PHASE1_OUTPUT/$best_checkpoint"
} else {
$PHASE1_CKPT = $PHASE1_OUTPUT
}
Write-Host ""
Write-Host "=== Phase 2 Training: Ranking-based Refinement ==="
Write-Host "π― Learning to rank and refine document identifiers"
$PHASE2_OUTPUT = "logs/glen_vault_production/GLEN_P2"
try {
python examples/glen_phase2/train_glen.py `
--output_dir $PHASE2_OUTPUT `
--model_name_or_path $PHASE1_CKPT `
--per_device_train_batch_size $PHASE2_BATCH_SIZE `
--per_device_eval_batch_size 4 `
--gradient_accumulation_steps $GRADIENT_ACCUMULATION `
--learning_rate $LEARNING_RATE `
--dropout_rate 0.1 `
--warmup_ratio 0.1 `
--id_class t5_bm25_truncate_3 `
--dataset_name the_vault `
--tree 1 `
--q_max_len 64 `
--p_max_len $MAX_INPUT_LENGTH `
--negative_passage_type self `
--positive_passage_no_shuffle True `
--tie_word_embeddings True `
--num_return_sequences 10 `
--logging_steps 100 `
--eval_steps 1000 `
--save_steps 2000 `
--overwrite_output_dir `
--wandb_tag "phase2_production" `
--project_name $WANDB_PROJECT `
--do_eval True `
--evaluation_strategy steps `
--num_train_epochs $PHASE2_EPOCHS `
--save_strategy steps `
--save_total_limit 5 `
--load_best_model_at_end True `
--metric_for_best_model eval_loss `
--greater_is_better False `
--seed 42 `
--gpu_memory_threshold $GPU_MEMORY_THRESHOLD `
--gpu_check_interval $GPU_CHECK_INTERVAL `
--fp16 True `
--dataloader_num_workers 4
if ($LASTEXITCODE -ne 0) {
throw "Phase 2 training failed!"
}
} catch {
Write-Error "β Phase 2 training failed: $_"
Write-Host "π Check logs in: $PHASE2_OUTPUT"
exit 1
}
Write-Host "β
Phase 2 training completed successfully!"
# Validate Phase 2 checkpoint
if (-not (Test-Path $PHASE2_OUTPUT)) {
Write-Error "β Phase 2 checkpoint not found at $PHASE2_OUTPUT"
exit 1
}
# Find the best Phase 2 checkpoint
$best_checkpoint_p2 = Get-ChildItem -Path $PHASE2_OUTPUT -Directory -Name "checkpoint-*" |
Sort-Object {[int]($_.Split('-')[1])} | Select-Object -Last 1
if ($best_checkpoint_p2) {
Write-Host "π Using Phase 2 checkpoint: $best_checkpoint_p2"
$PHASE2_CKPT = "$PHASE2_OUTPUT/$best_checkpoint_p2"
} else {
$PHASE2_CKPT = $PHASE2_OUTPUT
}
Write-Host ""
Write-Host "=== Document ID Generation ==="
Write-Host "π― Generating semantic IDs for all documents"
try {
python examples/glen_phase2/makeid_glen.py `
--model_name_or_path $PHASE2_CKPT `
--infer_dir $PHASE2_CKPT `
--dataset_name the_vault `
--docid_file_name glen_vault_production_docids `
--per_device_eval_batch_size 16 `
--max_input_length $MAX_INPUT_LENGTH `
--num_return_sequences 20
if ($LASTEXITCODE -ne 0) {
throw "Document ID generation failed!"
}
} catch {
Write-Error "β Document ID generation failed: $_"
exit 1
}
# Validate docid file
$docid_file = "logs/glen_vault_production/glen_vault_production_docids.tsv"
if (-not (Test-Path $docid_file)) {
Write-Error "β Document ID file not created: $docid_file"
exit 1
fi
$total_docs = (Get-Content $docid_file).Count
Write-Host "β
Document ID generation completed! Generated $total_docs document IDs"
Write-Host ""
Write-Host "=== Model Evaluation ==="
Write-Host "π― Evaluating model performance on test set"
try {
python examples/glen_phase2/evaluate_glen.py `
--model_name_or_path $PHASE2_CKPT `
--infer_dir $PHASE2_CKPT `
--dataset_name the_vault `
--docid_file_name glen_vault_production_docids `
--per_device_eval_batch_size 8 `
--q_max_len 64 `
--num_return_sequences 20 `
--logs_dir logs/glen_vault_production
if ($LASTEXITCODE -ne 0) {
throw "Model evaluation failed!"
}
} catch {
Write-Error "β Model evaluation failed: $_"
exit 1
}
Write-Host "β
Model evaluation completed successfully!"
# Training completion summary
$training_time = Get-Date
Write-Host ""
Write-Host "==========================================="
Write-Host "π FULL TRAINING COMPLETED SUCCESSFULLY! π"
Write-Host "==========================================="
Write-Host ""
Write-Host "π Training Summary:"
Write-Host " β
Phase 1: Document ID Assignment ($PHASE1_EPOCHS epochs)"
Write-Host " β
Phase 2: Ranking Refinement ($PHASE2_EPOCHS epochs)"
Write-Host " β
Document ID Generation ($total_docs documents)"
Write-Host " β
Model Evaluation & Metrics"
Write-Host ""
Write-Host "π Production Model Artifacts:"
Write-Host " π·οΈ Phase 1 Checkpoint: $PHASE1_CKPT"
Write-Host " π·οΈ Phase 2 Checkpoint: $PHASE2_CKPT"
Write-Host " π Document IDs: $docid_file"
Write-Host " π Evaluation Results: logs/glen_vault_production/"
Write-Host ""
Write-Host "π‘οΈ Memory Protection Summary:"
Write-Host " - GPU memory threshold: ${GPU_MEMORY_THRESHOLD} (85%)"
Write-Host " - Check interval: ${GPU_CHECK_INTERVAL} steps"
Write-Host " - FP16 training enabled throughout"
Write-Host " - Automatic checkpoint saving on memory limits"
Write-Host ""
Write-Host "π Performance Optimizations Used:"
Write-Host " - Gradient accumulation: ${GRADIENT_ACCUMULATION}x"
Write-Host " - Multi-worker data loading"
Write-Host " - Mixed precision training (FP16)"
Write-Host " - Memory-efficient batch sizes"
Write-Host ""
Write-Host "π Your GLEN model is ready for production use!"
Write-Host " - Use the Phase 2 checkpoint for inference"
Write-Host " - Document IDs are saved for fast retrieval"
Write-Host " - Evaluation metrics are in the logs directory"
Write-Host ""
Write-Host "Training completed at: $training_time" |