File size: 13,850 Bytes
3d5551b 6534252 3d5551b 6534252 3d5551b 6534252 3d5551b 6534252 3d5551b 6534252 3d5551b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import json
import logging
import os
import sys
import time
import torch
import wandb
import warnings
import pandas as pd
from transformers import (
HfArgumentParser,
set_seed,
AutoTokenizer,
AutoConfig,
AutoModelForSeq2SeqLM,
Seq2SeqTrainingArguments,
Seq2SeqTrainer,
DataCollatorForSeq2Seq,
)
from tevatron.arguments import (
GLENP2ModelArguments as ModelArguments,
GLENP2DataArguments as DataArguments,
GLENP2TrainingArguments as TrainingArguments,
)
from tevatron.datasets import GLENP2TrainDataset, GLENP2EncodeDataset, QPCollator
from tevatron.modeling import GLENP2Model
from tevatron.trainer import GLENP2Trainer, GLENP2Trainer_GC as GCTrainer
from tevatron.utils.gpu_monitor import GPUMemoryMonitor
logger = logging.getLogger(__name__)
YOUR_API_KEY = ""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings(action="ignore")
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("MODEL parameters %s", model_args)
set_seed(training_args.seed)
# Check if it's a HuggingFace model name or a local checkpoint path
if not os.path.exists(model_args.model_name_or_path):
# It's a HuggingFace model name, must be T5
assert model_args.model_name_or_path.startswith(
"t5-"
), "Only T5- are supported for GLEN"
else:
# It's a local checkpoint path, assume it's from Phase 1 which is T5-based
logger.info(f"Loading from local checkpoint: {model_args.model_name_or_path}")
if model_args.model_name_or_path == "t5-large":
model_args.num_layers = 24
model_args.num_decoder_layers = 24
model_args.d_ff = 4096
model_args.d_model = 1024
model_args.num_heads = 16
model_args.d_kv = 64
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
)
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
num_labels=1,
cache_dir=model_args.cache_dir,
num_layers=model_args.num_layers,
num_decoder_layers=model_args.num_decoder_layers,
d_ff=model_args.d_ff,
d_model=model_args.d_model,
num_heads=model_args.num_heads,
decoder_start_token_id=0, # 1,
output_past=True,
d_kv=model_args.d_kv,
dropout_rate=model_args.dropout_rate,
tie_word_embeddings=model_args.tie_word_embeddings,
)
model = GLENP2Model.build(
model_args,
training_args,
tokenizer=tokenizer,
config=config,
cache_dir=model_args.cache_dir,
)
if training_args.grad_cache:
assert data_args.negative_passage_type in [
"self",
"random",
"hard",
], "grad_cache not implemented for other negative_passage_type"
# Training dataset
if data_args.dataset_name in ["nq320k", "marco_passage", "the_vault"]:
train_dataset = GLENP2TrainDataset(data_args=data_args, tokenizer=tokenizer)
else:
raise NotImplementedError(
f"dataset_name {data_args.dataset_name} not implemented"
)
# Evaluation
if training_args.do_eval and data_args.dataset_name in ["nq320k", "marco_passage", "the_vault"]:
assert (
training_args.eval_accumulation_steps is None
), "eval_accumulation_steps not implemented"
assert data_args.test100 == 0, "test100 not available for do_eval"
model_args.max_output_length = model_args.num_multi_vectors + 1
# dataset
eval_dataset = GLENP2EncodeDataset(
data_args=data_args,
tokenizer=tokenizer,
max_len=data_args.q_max_len,
task="infer_qry",
)
eval_dataset_doc = GLENP2EncodeDataset(
data_args=data_args,
tokenizer=tokenizer,
max_len=data_args.p_max_len,
task="make_id",
)
# Set docid_file_name
if model_args.docid_file_name == "":
model_args.docid_file_name = f"{model.__class__.__name__}_len_{data_args.p_max_len}_{data_args.dataset_name}"
model_args.docid_file_name = os.path.join(
training_args.output_dir, model_args.docid_file_name + ".tsv"
)
# Set res1_save_path
if training_args.res1_save_path == "":
training_args.res1_save_path = f"{model.__class__.__name__}_len_{data_args.p_max_len}_{data_args.dataset_name}_res1"
training_args.res1_save_path = os.path.join(
training_args.output_dir, training_args.res1_save_path + ".tsv"
)
# Set evaluation log file path
training_args.eval_log_file = os.path.join(
training_args.output_dir, "eval_gen_full.txt"
)
# Load unseen query, seen query set
if data_args.dataset_name == "nq320k":
seen_query_df = pd.read_csv(
"data/nq320k/GTQ_NQ_dev_seen.tsv", sep="\t", dtype=str
)
unseen_query_df = pd.read_csv(
"data/nq320k/GTQ_NQ_dev_unseen.tsv", sep="\t", dtype=str
)
training_args.unseen_query_set = set(unseen_query_df["query"])
training_args.seen_query_set = set(seen_query_df["query"])
print(
f"> Loading unseen query (#:{len(training_args.unseen_query_set)}) and seen query (#:{len(training_args.seen_query_set)})"
)
elif data_args.dataset_name == "the_vault":
# For The Vault, we don't have seen/unseen split, so create empty sets
training_args.unseen_query_set = set()
training_args.seen_query_set = set()
print("> The Vault dataset: using all queries without seen/unseen split")
# Set metric cutoff
training_args.recall_num = [1, 10, 100]
training_args.ndcg_num = [1, 10, 100]
training_args.mrr_num = [10, 100]
# remain only if smaller than model_args.num_return_sequences
training_args.recall_num = [
x for x in training_args.recall_num if x <= model_args.num_return_sequences
]
training_args.ndcg_num = [
x for x in training_args.ndcg_num if x <= model_args.num_return_sequences
]
training_args.mrr_num = [
x for x in training_args.mrr_num if x <= model_args.num_return_sequences
]
else:
eval_dataset, eval_dataset_doc = None, None
if training_args.local_rank > 0:
print("Waiting for main process to perform the mapping")
if torch.distributed.is_initialized():
torch.distributed.barrier()
if training_args.local_rank == 0:
print("Loading results from main process")
if torch.distributed.is_initialized():
torch.distributed.barrier()
trainer_cls = GCTrainer if training_args.grad_cache else GLENP2Trainer
# Initialize GPU monitor
gpu_monitor = GPUMemoryMonitor(
memory_threshold=training_args.gpu_memory_threshold,
check_interval=training_args.gpu_check_interval
)
# Initialize trainer
trainer = trainer_cls(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
eval_dataset_doc=eval_dataset_doc,
data_collator=QPCollator(
tokenizer, max_p_len=data_args.p_max_len, max_q_len=data_args.q_max_len
),
)
trainer.data_args = data_args
train_dataset.trainer = trainer
model.trainer = trainer
# Set masking for special tokens in evaluation decoding
model.tokenizer = tokenizer
if model_args.mask_special_tokens_for_decoding:
special_token_ids = tokenizer.all_special_ids
model_args.special_token_ids = [
x
for x in special_token_ids
if x
not in [
tokenizer.bos_token_id,
tokenizer.eos_token_id,
tokenizer.pad_token_id,
]
]
# Load SentenceT5Model checkpoint
if model_args.load_pretrained_st5_checkpoint is not None:
print(
f"> Restoring parameters from checkpoint {model_args.load_pretrained_st5_checkpoint}"
)
if model_args.load_pretrained_st5_checkpoint.endswith(
".ckpt"
) or model_args.load_pretrained_st5_checkpoint.endswith(".bin"):
state_dict = torch.load(model_args.load_pretrained_st5_checkpoint)
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
else:
state_dict = torch.load(
os.path.join(
model_args.load_pretrained_st5_checkpoint, "pytorch_model.bin"
)
)
if model_args.untie_encoder:
model.lm_q.load_state_dict(state_dict, strict=False)
model.lm_p.load_state_dict(state_dict, strict=False)
else:
model.lm_q.load_state_dict(state_dict, strict=False)
model.lm_p = model.lm_q
print(
f"> Restored parameters from checkpoint {model_args.load_pretrained_st5_checkpoint}"
)
# Weight tying
if "lm_head.weight" in model.lm_p.state_dict() and model_args.untie_encoder:
state_dict = model.lm_p.state_dict()
model.lm_p.shared.weight.data.copy_(state_dict["shared.weight"])
model.lm_p.lm_head.weight.data.copy_(model.lm_p.shared.weight.data)
state_dict = model.lm_q.state_dict()
model.lm_q.shared.weight.data.copy_(state_dict["shared.weight"])
model.lm_q.lm_head.weight.data.copy_(model.lm_q.shared.weight.data)
elif "lm_head.weight" in model.lm_p.state_dict() and not model_args.untie_encoder:
state_dict = model.lm_p.state_dict()
model.lm_p.shared.weight.data.copy_(state_dict["shared.weight"])
model.lm_p.lm_head.weight.data.copy_(model.lm_p.shared.weight.data)
model.lm_q = model.lm_p
# Save args and tokenizer
if trainer.is_world_process_zero():
# Save args and tokenizer
tokenizer.save_pretrained(training_args.output_dir)
with open(os.path.join(training_args.output_dir, "model_args.json"), "w") as f:
json.dump(model_args.__dict__, f, indent=4)
with open(os.path.join(training_args.output_dir, "data_args.json"), "w") as f:
json.dump(data_args.__dict__, f, indent=4)
# Report to wandb
if YOUR_API_KEY != "":
training_args.report_to = "wandb"
os.environ["WANDB_API_KEY"] = YOUR_API_KEY
important_info_list = [str(data_args.dataset_name.replace("/", "_"))]
if data_args.dataset_name in ["nq320k", "marco_passage"]:
important_info_list += [str(data_args.query_type)]
important_info_list += [str(model.__class__.__name__)]
important_info_str = "_".join(important_info_list)
wandb_tag = (
training_args.wandb_tag.split(",") if training_args.wandb_tag else []
)
wandb_name = f'{time.strftime("%Y%m%d-%H%M%S")}-{important_info_str}'
wandb.init(
project=training_args.project_name,
name=wandb_name,
settings=wandb.Settings(save_code=True, code_dir="."),
tags=wandb_tag,
)
# Custom training loop with GPU monitoring
def training_step(model, inputs):
if not gpu_monitor.check_memory():
logger.warning("GPU memory threshold exceeded. Stopping training.")
raise RuntimeError("GPU memory threshold exceeded")
return model(**inputs)
# Start training
try:
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
except RuntimeError as e:
if "GPU memory threshold exceeded" in str(e):
logger.warning("Training stopped due to GPU memory threshold")
# Save checkpoint before stopping
trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-memory-stop"))
else:
raise e
if __name__ == "__main__":
main()
|