File size: 13,850 Bytes
3d5551b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6534252
 
 
 
3d5551b
 
 
 
 
 
 
 
 
 
6534252
3d5551b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6534252
 
 
 
 
 
 
 
 
3d5551b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6534252
 
 
 
 
 
3d5551b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6534252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5551b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import json
import logging
import os
import sys
import time
import torch
import wandb
import warnings

import pandas as pd

from transformers import (
    HfArgumentParser,
    set_seed,
    AutoTokenizer,
    AutoConfig,
    AutoModelForSeq2SeqLM,
    Seq2SeqTrainingArguments,
    Seq2SeqTrainer,
    DataCollatorForSeq2Seq,
)

from tevatron.arguments import (
    GLENP2ModelArguments as ModelArguments,
    GLENP2DataArguments as DataArguments,
    GLENP2TrainingArguments as TrainingArguments,
)
from tevatron.datasets import GLENP2TrainDataset, GLENP2EncodeDataset, QPCollator
from tevatron.modeling import GLENP2Model
from tevatron.trainer import GLENP2Trainer, GLENP2Trainer_GC as GCTrainer
from tevatron.utils.gpu_monitor import GPUMemoryMonitor

logger = logging.getLogger(__name__)
YOUR_API_KEY = ""

os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings(action="ignore")


def main():
    parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1])
        )
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
        model_args: ModelArguments
        data_args: DataArguments
        training_args: TrainingArguments

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
    logger.info("MODEL parameters %s", model_args)

    set_seed(training_args.seed)

    # Check if it's a HuggingFace model name or a local checkpoint path
    if not os.path.exists(model_args.model_name_or_path):
        # It's a HuggingFace model name, must be T5
        assert model_args.model_name_or_path.startswith(
            "t5-"
        ), "Only T5- are supported for GLEN"
    else:
        # It's a local checkpoint path, assume it's from Phase 1 which is T5-based
        logger.info(f"Loading from local checkpoint: {model_args.model_name_or_path}")

    if model_args.model_name_or_path == "t5-large":
        model_args.num_layers = 24
        model_args.num_decoder_layers = 24
        model_args.d_ff = 4096
        model_args.d_model = 1024
        model_args.num_heads = 16
        model_args.d_kv = 64

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
    )
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name
        else model_args.model_name_or_path,
        num_labels=1,
        cache_dir=model_args.cache_dir,
        num_layers=model_args.num_layers,
        num_decoder_layers=model_args.num_decoder_layers,
        d_ff=model_args.d_ff,
        d_model=model_args.d_model,
        num_heads=model_args.num_heads,
        decoder_start_token_id=0,  # 1,
        output_past=True,
        d_kv=model_args.d_kv,
        dropout_rate=model_args.dropout_rate,
        tie_word_embeddings=model_args.tie_word_embeddings,
    )
    model = GLENP2Model.build(
        model_args,
        training_args,
        tokenizer=tokenizer,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    if training_args.grad_cache:
        assert data_args.negative_passage_type in [
            "self",
            "random",
            "hard",
        ], "grad_cache not implemented for other negative_passage_type"

    # Training dataset
    if data_args.dataset_name in ["nq320k", "marco_passage", "the_vault"]:
        train_dataset = GLENP2TrainDataset(data_args=data_args, tokenizer=tokenizer)
    else:
        raise NotImplementedError(
            f"dataset_name {data_args.dataset_name} not implemented"
        )

    # Evaluation
    if training_args.do_eval and data_args.dataset_name in ["nq320k", "marco_passage", "the_vault"]:
        assert (
            training_args.eval_accumulation_steps is None
        ), "eval_accumulation_steps not implemented"
        assert data_args.test100 == 0, "test100 not available for do_eval"
        model_args.max_output_length = model_args.num_multi_vectors + 1

        # dataset
        eval_dataset = GLENP2EncodeDataset(
            data_args=data_args,
            tokenizer=tokenizer,
            max_len=data_args.q_max_len,
            task="infer_qry",
        )
        eval_dataset_doc = GLENP2EncodeDataset(
            data_args=data_args,
            tokenizer=tokenizer,
            max_len=data_args.p_max_len,
            task="make_id",
        )

        # Set docid_file_name
        if model_args.docid_file_name == "":
            model_args.docid_file_name = f"{model.__class__.__name__}_len_{data_args.p_max_len}_{data_args.dataset_name}"
        model_args.docid_file_name = os.path.join(
            training_args.output_dir, model_args.docid_file_name + ".tsv"
        )

        # Set res1_save_path
        if training_args.res1_save_path == "":
            training_args.res1_save_path = f"{model.__class__.__name__}_len_{data_args.p_max_len}_{data_args.dataset_name}_res1"
        training_args.res1_save_path = os.path.join(
            training_args.output_dir, training_args.res1_save_path + ".tsv"
        )

        # Set evaluation log file path
        training_args.eval_log_file = os.path.join(
            training_args.output_dir, "eval_gen_full.txt"
        )

        # Load unseen query, seen query set
        if data_args.dataset_name == "nq320k":
            seen_query_df = pd.read_csv(
                "data/nq320k/GTQ_NQ_dev_seen.tsv", sep="\t", dtype=str
            )
            unseen_query_df = pd.read_csv(
                "data/nq320k/GTQ_NQ_dev_unseen.tsv", sep="\t", dtype=str
            )
            training_args.unseen_query_set = set(unseen_query_df["query"])
            training_args.seen_query_set = set(seen_query_df["query"])
            print(
                f"> Loading unseen query (#:{len(training_args.unseen_query_set)}) and seen query (#:{len(training_args.seen_query_set)})"
            )
        elif data_args.dataset_name == "the_vault":
            # For The Vault, we don't have seen/unseen split, so create empty sets
            training_args.unseen_query_set = set()
            training_args.seen_query_set = set()
            print("> The Vault dataset: using all queries without seen/unseen split")

        # Set metric cutoff
        training_args.recall_num = [1, 10, 100]
        training_args.ndcg_num = [1, 10, 100]
        training_args.mrr_num = [10, 100]

        # remain only if smaller than model_args.num_return_sequences
        training_args.recall_num = [
            x for x in training_args.recall_num if x <= model_args.num_return_sequences
        ]
        training_args.ndcg_num = [
            x for x in training_args.ndcg_num if x <= model_args.num_return_sequences
        ]
        training_args.mrr_num = [
            x for x in training_args.mrr_num if x <= model_args.num_return_sequences
        ]

    else:
        eval_dataset, eval_dataset_doc = None, None

    if training_args.local_rank > 0:
        print("Waiting for main process to perform the mapping")
        if torch.distributed.is_initialized():
            torch.distributed.barrier()
    if training_args.local_rank == 0:
        print("Loading results from main process")
        if torch.distributed.is_initialized():
            torch.distributed.barrier()

    trainer_cls = GCTrainer if training_args.grad_cache else GLENP2Trainer

    # Initialize GPU monitor
    gpu_monitor = GPUMemoryMonitor(
        memory_threshold=training_args.gpu_memory_threshold,
        check_interval=training_args.gpu_check_interval
    )

    # Initialize trainer
    trainer = trainer_cls(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        eval_dataset_doc=eval_dataset_doc,
        data_collator=QPCollator(
            tokenizer, max_p_len=data_args.p_max_len, max_q_len=data_args.q_max_len
        ),
    )
    trainer.data_args = data_args
    train_dataset.trainer = trainer
    model.trainer = trainer

    # Set masking for special tokens in evaluation decoding
    model.tokenizer = tokenizer
    if model_args.mask_special_tokens_for_decoding:
        special_token_ids = tokenizer.all_special_ids
        model_args.special_token_ids = [
            x
            for x in special_token_ids
            if x
            not in [
                tokenizer.bos_token_id,
                tokenizer.eos_token_id,
                tokenizer.pad_token_id,
            ]
        ]

    # Load SentenceT5Model checkpoint
    if model_args.load_pretrained_st5_checkpoint is not None:
        print(
            f"> Restoring parameters from checkpoint {model_args.load_pretrained_st5_checkpoint}"
        )

        if model_args.load_pretrained_st5_checkpoint.endswith(
            ".ckpt"
        ) or model_args.load_pretrained_st5_checkpoint.endswith(".bin"):
            state_dict = torch.load(model_args.load_pretrained_st5_checkpoint)
            if "state_dict" in state_dict:
                state_dict = state_dict["state_dict"]
            state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
        else:
            state_dict = torch.load(
                os.path.join(
                    model_args.load_pretrained_st5_checkpoint, "pytorch_model.bin"
                )
            )

        if model_args.untie_encoder:
            model.lm_q.load_state_dict(state_dict, strict=False)
            model.lm_p.load_state_dict(state_dict, strict=False)
        else:
            model.lm_q.load_state_dict(state_dict, strict=False)
            model.lm_p = model.lm_q
    print(
        f"> Restored parameters from checkpoint {model_args.load_pretrained_st5_checkpoint}"
    )

    # Weight tying
    if "lm_head.weight" in model.lm_p.state_dict() and model_args.untie_encoder:
        state_dict = model.lm_p.state_dict()
        model.lm_p.shared.weight.data.copy_(state_dict["shared.weight"])
        model.lm_p.lm_head.weight.data.copy_(model.lm_p.shared.weight.data)
        state_dict = model.lm_q.state_dict()
        model.lm_q.shared.weight.data.copy_(state_dict["shared.weight"])
        model.lm_q.lm_head.weight.data.copy_(model.lm_q.shared.weight.data)
    elif "lm_head.weight" in model.lm_p.state_dict() and not model_args.untie_encoder:
        state_dict = model.lm_p.state_dict()
        model.lm_p.shared.weight.data.copy_(state_dict["shared.weight"])
        model.lm_p.lm_head.weight.data.copy_(model.lm_p.shared.weight.data)
        model.lm_q = model.lm_p

    # Save args and tokenizer
    if trainer.is_world_process_zero():
        # Save args and tokenizer
        tokenizer.save_pretrained(training_args.output_dir)
        with open(os.path.join(training_args.output_dir, "model_args.json"), "w") as f:
            json.dump(model_args.__dict__, f, indent=4)
        with open(os.path.join(training_args.output_dir, "data_args.json"), "w") as f:
            json.dump(data_args.__dict__, f, indent=4)

        # Report to wandb
        if YOUR_API_KEY != "":
            training_args.report_to = "wandb"
            os.environ["WANDB_API_KEY"] = YOUR_API_KEY

            important_info_list = [str(data_args.dataset_name.replace("/", "_"))]
            if data_args.dataset_name in ["nq320k", "marco_passage"]:
                important_info_list += [str(data_args.query_type)]
            important_info_list += [str(model.__class__.__name__)]
            important_info_str = "_".join(important_info_list)

            wandb_tag = (
                training_args.wandb_tag.split(",") if training_args.wandb_tag else []
            )
            wandb_name = f'{time.strftime("%Y%m%d-%H%M%S")}-{important_info_str}'
            wandb.init(
                project=training_args.project_name,
                name=wandb_name,
                settings=wandb.Settings(save_code=True, code_dir="."),
                tags=wandb_tag,
            )

    # Custom training loop with GPU monitoring
    def training_step(model, inputs):
        if not gpu_monitor.check_memory():
            logger.warning("GPU memory threshold exceeded. Stopping training.")
            raise RuntimeError("GPU memory threshold exceeded")
        return model(**inputs)

    # Start training
    try:
        trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
    except RuntimeError as e:
        if "GPU memory threshold exceeded" in str(e):
            logger.warning("Training stopped due to GPU memory threshold")
            # Save checkpoint before stopping
            trainer.save_model(os.path.join(training_args.output_dir, "checkpoint-memory-stop"))
        else:
            raise e


if __name__ == "__main__":
    main()