File size: 1,756 Bytes
d466721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-act2pas
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-act2pas

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1036
- Rouge1: 96.7196
- Rouge2: 94.1746
- Rougel: 95.2986
- Rougelsum: 95.3129
- Gen Len: 16.5466

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.1668        | 1.0   | 8619  | 0.1201          | 96.566  | 93.6856 | 94.9463 | 94.9567   | 16.5427 |
| 0.1434        | 2.0   | 17238 | 0.1067          | 96.6808 | 94.0862 | 95.2095 | 95.2232   | 16.5474 |
| 0.129         | 3.0   | 25857 | 0.1036          | 96.7196 | 94.1746 | 95.2986 | 95.3129   | 16.5466 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Tokenizers 0.15.2