sharpenb commited on
Commit
9b73fe9
1 Parent(s): ae75bec

Upload folder using huggingface_hub (#2)

Browse files

- 18161e7b08edc4085b9ef0f118f85f47a4f94cef452279d4da41470b85a864f9 (a2529296d97384c6d38716f6144838a120bdd565)
- 589fe748081eca9c943b63e2757ff8fd212cf87899addcd3e441cc706f8ecf8f (e079f7fbfc61c592d800f15299c7d6d39448e043)
- 58236eeaffb96a338ebb21077bd7f8be057e412bb40e91a81db4d692836dec7e (47a17d4a00ffaaea6f8cd94448fd45d86ab06d11)

Files changed (4) hide show
  1. README.md +2 -2
  2. config.json +2 -2
  3. plots.png +0 -0
  4. smash_config.json +1 -1
README.md CHANGED
@@ -34,7 +34,7 @@ tags:
34
 
35
  ## Results
36
 
37
- Detailed efficiency metrics coming soon!
38
 
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
@@ -61,7 +61,7 @@ You can run the smashed model with these steps:
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
62
 
63
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/norallm-normistral-7b-warm-bnb-8bit-smashed",
64
- trust_remote_code=True)
65
  tokenizer = AutoTokenizer.from_pretrained("norallm/normistral-7b-warm")
66
 
67
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
 
34
 
35
  ## Results
36
 
37
+ ![image info](./plots.png)
38
 
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
 
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
62
 
63
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/norallm-normistral-7b-warm-bnb-8bit-smashed",
64
+ trust_remote_code=True, device_map='auto')
65
  tokenizer = AutoTokenizer.from_pretrained("norallm/normistral-7b-warm")
66
 
67
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/tmp/tmpf256uewp",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
@@ -19,7 +19,7 @@
19
  "quantization_config": {
20
  "bnb_4bit_compute_dtype": "bfloat16",
21
  "bnb_4bit_quant_type": "fp4",
22
- "bnb_4bit_use_double_quant": true,
23
  "llm_int8_enable_fp32_cpu_offload": false,
24
  "llm_int8_has_fp16_weight": false,
25
  "llm_int8_skip_modules": [
 
1
  {
2
+ "_name_or_path": "/tmp/tmpg1qf4342",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
 
19
  "quantization_config": {
20
  "bnb_4bit_compute_dtype": "bfloat16",
21
  "bnb_4bit_quant_type": "fp4",
22
+ "bnb_4bit_use_double_quant": false,
23
  "llm_int8_enable_fp32_cpu_offload": false,
24
  "llm_int8_has_fp16_weight": false,
25
  "llm_int8_skip_modules": [
plots.png ADDED
smash_config.json CHANGED
@@ -8,7 +8,7 @@
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
- "cache_dir": "/ceph/hdd/staff/charpent/.cache/models5bqts955",
12
  "batch_size": 1,
13
  "model_name": "norallm/normistral-7b-warm",
14
  "pruning_ratio": 0.0,
 
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/models6ifiukjd",
12
  "batch_size": 1,
13
  "model_name": "norallm/normistral-7b-warm",
14
  "pruning_ratio": 0.0,