Upload folder using huggingface_hub (#2)
Browse files- 18161e7b08edc4085b9ef0f118f85f47a4f94cef452279d4da41470b85a864f9 (a2529296d97384c6d38716f6144838a120bdd565)
- 589fe748081eca9c943b63e2757ff8fd212cf87899addcd3e441cc706f8ecf8f (e079f7fbfc61c592d800f15299c7d6d39448e043)
- 58236eeaffb96a338ebb21077bd7f8be057e412bb40e91a81db4d692836dec7e (47a17d4a00ffaaea6f8cd94448fd45d86ab06d11)
- README.md +2 -2
- config.json +2 -2
- plots.png +0 -0
- smash_config.json +1 -1
README.md
CHANGED
@@ -34,7 +34,7 @@ tags:
|
|
34 |
|
35 |
## Results
|
36 |
|
37 |
-
|
38 |
|
39 |
**Frequently Asked Questions**
|
40 |
- ***How does the compression work?*** The model is compressed with llm-int8.
|
@@ -61,7 +61,7 @@ You can run the smashed model with these steps:
|
|
61 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
|
63 |
model = AutoModelForCausalLM.from_pretrained("PrunaAI/norallm-normistral-7b-warm-bnb-8bit-smashed",
|
64 |
-
trust_remote_code=True)
|
65 |
tokenizer = AutoTokenizer.from_pretrained("norallm/normistral-7b-warm")
|
66 |
|
67 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
|
|
34 |
|
35 |
## Results
|
36 |
|
37 |
+
![image info](./plots.png)
|
38 |
|
39 |
**Frequently Asked Questions**
|
40 |
- ***How does the compression work?*** The model is compressed with llm-int8.
|
|
|
61 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
|
63 |
model = AutoModelForCausalLM.from_pretrained("PrunaAI/norallm-normistral-7b-warm-bnb-8bit-smashed",
|
64 |
+
trust_remote_code=True, device_map='auto')
|
65 |
tokenizer = AutoTokenizer.from_pretrained("norallm/normistral-7b-warm")
|
66 |
|
67 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/tmp/
|
3 |
"architectures": [
|
4 |
"MistralForCausalLM"
|
5 |
],
|
@@ -19,7 +19,7 @@
|
|
19 |
"quantization_config": {
|
20 |
"bnb_4bit_compute_dtype": "bfloat16",
|
21 |
"bnb_4bit_quant_type": "fp4",
|
22 |
-
"bnb_4bit_use_double_quant":
|
23 |
"llm_int8_enable_fp32_cpu_offload": false,
|
24 |
"llm_int8_has_fp16_weight": false,
|
25 |
"llm_int8_skip_modules": [
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/tmp/tmpg1qf4342",
|
3 |
"architectures": [
|
4 |
"MistralForCausalLM"
|
5 |
],
|
|
|
19 |
"quantization_config": {
|
20 |
"bnb_4bit_compute_dtype": "bfloat16",
|
21 |
"bnb_4bit_quant_type": "fp4",
|
22 |
+
"bnb_4bit_use_double_quant": false,
|
23 |
"llm_int8_enable_fp32_cpu_offload": false,
|
24 |
"llm_int8_has_fp16_weight": false,
|
25 |
"llm_int8_skip_modules": [
|
plots.png
ADDED
smash_config.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
"compilers": "None",
|
9 |
"task": "text_text_generation",
|
10 |
"device": "cuda",
|
11 |
-
"cache_dir": "/ceph/hdd/staff/charpent/.cache/
|
12 |
"batch_size": 1,
|
13 |
"model_name": "norallm/normistral-7b-warm",
|
14 |
"pruning_ratio": 0.0,
|
|
|
8 |
"compilers": "None",
|
9 |
"task": "text_text_generation",
|
10 |
"device": "cuda",
|
11 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/models6ifiukjd",
|
12 |
"batch_size": 1,
|
13 |
"model_name": "norallm/normistral-7b-warm",
|
14 |
"pruning_ratio": 0.0,
|