Upload folder using huggingface_hub (#2)
Browse files- 496ea46e041fc7d353b3ff37808a913445f5cb1bcc6a400ec7b5f44e173d1dc2 (6fcde3866a07ebbb15e62d04045aa93f0fcd035c)
- 17a3b7ac4467af3ace2cba5f78e634773978e56c358e00cadabc16e6364dcd73 (257abbb9a40316f1e95d74b5f4c770167a98650d)
- README.md +2 -2
- config.json +1 -1
- plots.png +0 -0
- results.json +24 -24
- smash_config.json +5 -5
README.md
CHANGED
@@ -60,9 +60,9 @@ You can run the smashed model with these steps:
|
|
60 |
2. Load & run the model.
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
-
|
64 |
|
65 |
-
model =
|
66 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
67 |
|
68 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
|
|
60 |
2. Load & run the model.
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
from awq import AutoAWQForCausalLM
|
64 |
|
65 |
+
model = AutoAWQForCausalLM.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
67 |
|
68 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/tmp/
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/tmp/tmpbck3xy20",
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
plots.png
CHANGED
results.json
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
{
|
2 |
"base_current_gpu_type": "NVIDIA A100-PCIE-40GB",
|
3 |
"base_current_gpu_total_memory": 40339.3125,
|
4 |
-
"base_token_generation_latency_sync":
|
5 |
-
"base_token_generation_latency_async":
|
6 |
-
"base_token_generation_throughput_sync": 0.
|
7 |
-
"base_token_generation_throughput_async": 0.
|
8 |
-
"base_token_generation_CO2_emissions":
|
9 |
-
"base_token_generation_energy_consumption":
|
10 |
-
"base_inference_latency_sync":
|
11 |
-
"base_inference_latency_async":
|
12 |
-
"base_inference_throughput_sync": 0.
|
13 |
-
"base_inference_throughput_async": 0.
|
14 |
-
"base_inference_CO2_emissions":
|
15 |
-
"base_inference_energy_consumption":
|
16 |
"smashed_current_gpu_type": "NVIDIA A100-PCIE-40GB",
|
17 |
"smashed_current_gpu_total_memory": 40339.3125,
|
18 |
-
"smashed_token_generation_latency_sync":
|
19 |
-
"smashed_token_generation_latency_async":
|
20 |
-
"smashed_token_generation_throughput_sync": 0.
|
21 |
-
"smashed_token_generation_throughput_async": 0.
|
22 |
-
"smashed_token_generation_CO2_emissions":
|
23 |
-
"smashed_token_generation_energy_consumption":
|
24 |
-
"smashed_inference_latency_sync":
|
25 |
-
"smashed_inference_latency_async":
|
26 |
-
"smashed_inference_throughput_sync": 0.
|
27 |
-
"smashed_inference_throughput_async": 0.
|
28 |
-
"smashed_inference_CO2_emissions":
|
29 |
-
"smashed_inference_energy_consumption":
|
30 |
}
|
|
|
1 |
{
|
2 |
"base_current_gpu_type": "NVIDIA A100-PCIE-40GB",
|
3 |
"base_current_gpu_total_memory": 40339.3125,
|
4 |
+
"base_token_generation_latency_sync": 56.77331275939942,
|
5 |
+
"base_token_generation_latency_async": 57.322778180241585,
|
6 |
+
"base_token_generation_throughput_sync": 0.017613909624015017,
|
7 |
+
"base_token_generation_throughput_async": 0.01744507212919221,
|
8 |
+
"base_token_generation_CO2_emissions": null,
|
9 |
+
"base_token_generation_energy_consumption": null,
|
10 |
+
"base_inference_latency_sync": 54.84390411376953,
|
11 |
+
"base_inference_latency_async": 53.76389026641846,
|
12 |
+
"base_inference_throughput_sync": 0.018233566996353427,
|
13 |
+
"base_inference_throughput_async": 0.018599844524729483,
|
14 |
+
"base_inference_CO2_emissions": null,
|
15 |
+
"base_inference_energy_consumption": null,
|
16 |
"smashed_current_gpu_type": "NVIDIA A100-PCIE-40GB",
|
17 |
"smashed_current_gpu_total_memory": 40339.3125,
|
18 |
+
"smashed_token_generation_latency_sync": 43.27337074279785,
|
19 |
+
"smashed_token_generation_latency_async": 43.26997306197882,
|
20 |
+
"smashed_token_generation_throughput_sync": 0.02310890006566992,
|
21 |
+
"smashed_token_generation_throughput_async": 0.023110714641944086,
|
22 |
+
"smashed_token_generation_CO2_emissions": null,
|
23 |
+
"smashed_token_generation_energy_consumption": null,
|
24 |
+
"smashed_inference_latency_sync": 51.69879035949707,
|
25 |
+
"smashed_inference_latency_async": 43.543338775634766,
|
26 |
+
"smashed_inference_throughput_sync": 0.019342812337509556,
|
27 |
+
"smashed_inference_throughput_async": 0.02296562523955014,
|
28 |
+
"smashed_inference_CO2_emissions": null,
|
29 |
+
"smashed_inference_energy_consumption": null
|
30 |
}
|
smash_config.json
CHANGED
@@ -2,19 +2,19 @@
|
|
2 |
"api_key": null,
|
3 |
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
"smash_config": {
|
5 |
-
"pruners": "
|
6 |
"pruning_ratio": 0.0,
|
7 |
-
"factorizers": "
|
8 |
"quantizers": "['awq']",
|
9 |
"weight_quantization_bits": 4,
|
10 |
-
"output_deviation": 0.
|
11 |
-
"compilers": "
|
12 |
"static_batch": true,
|
13 |
"static_shape": true,
|
14 |
"controlnet": "None",
|
15 |
"unet_dim": 4,
|
16 |
"device": "cuda",
|
17 |
-
"cache_dir": "/ceph/hdd/staff/charpent/.cache/
|
18 |
"batch_size": 1,
|
19 |
"model_name": "meta-llama/Meta-Llama-3-8B",
|
20 |
"task": "text_text_generation",
|
|
|
2 |
"api_key": null,
|
3 |
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
"pruning_ratio": 0.0,
|
7 |
+
"factorizers": "None",
|
8 |
"quantizers": "['awq']",
|
9 |
"weight_quantization_bits": 4,
|
10 |
+
"output_deviation": 0.005,
|
11 |
+
"compilers": "None",
|
12 |
"static_batch": true,
|
13 |
"static_shape": true,
|
14 |
"controlnet": "None",
|
15 |
"unet_dim": 4,
|
16 |
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/models1tymb0wo",
|
18 |
"batch_size": 1,
|
19 |
"model_name": "meta-llama/Meta-Llama-3-8B",
|
20 |
"task": "text_text_generation",
|