8deb8866778629cb426b755cf20c80ba75342363b6ca2bcbe53a6f3d2109f13d
Browse files- README.md +83 -0
- config.json +52 -0
- configuration_falcon.py +147 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_falcon.py +1262 -0
- plots.png +0 -0
- smash_config.json +27 -0
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pruna-engine
|
3 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
---
|
12 |
+
<!-- header start -->
|
13 |
+
<!-- 200823 -->
|
14 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
15 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
16 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
17 |
+
</a>
|
18 |
+
</div>
|
19 |
+
<!-- header end -->
|
20 |
+
|
21 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
22 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
23 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
24 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
|
25 |
+
|
26 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
27 |
+
|
28 |
+
- Give a thumbs up if you like this model!
|
29 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
30 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
31 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
32 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
33 |
+
|
34 |
+
## Results
|
35 |
+
|
36 |
+
![image info](./plots.png)
|
37 |
+
|
38 |
+
**Frequently Asked Questions**
|
39 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
40 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
41 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
42 |
+
- ***What is the model format?*** We use safetensors.
|
43 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
44 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
45 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
46 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
47 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
48 |
+
|
49 |
+
## Setup
|
50 |
+
|
51 |
+
You can run the smashed model with these steps:
|
52 |
+
|
53 |
+
0. Check requirements from the original repo euclaise/falcon_1b_stage2 installed. In particular, check python, cuda, and transformers versions.
|
54 |
+
1. Make sure that you have installed quantization related packages.
|
55 |
+
```bash
|
56 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
57 |
+
```
|
58 |
+
2. Load & run the model.
|
59 |
+
```python
|
60 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
61 |
+
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/euclaise-falcon_1b_stage2-bnb-8bit-smashed",
|
63 |
+
trust_remote_code=True)
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("euclaise/falcon_1b_stage2")
|
65 |
+
|
66 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
67 |
+
|
68 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
69 |
+
tokenizer.decode(outputs[0])
|
70 |
+
```
|
71 |
+
|
72 |
+
## Configurations
|
73 |
+
|
74 |
+
The configuration info are in `smash_config.json`.
|
75 |
+
|
76 |
+
## Credits & License
|
77 |
+
|
78 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model euclaise/falcon_1b_stage2 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
79 |
+
|
80 |
+
## Want to compress other models?
|
81 |
+
|
82 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
83 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/tmp/tmp_a9b2xys",
|
3 |
+
"alibi": true,
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"FalconForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_falcon.FalconConfig",
|
11 |
+
"AutoModel": "tiiuae/falcon-rw-1b--modeling_falcon.FalconModel",
|
12 |
+
"AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM",
|
13 |
+
"AutoModelForQuestionAnswering": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForTokenClassification"
|
16 |
+
},
|
17 |
+
"bias": true,
|
18 |
+
"bos_token_id": 1,
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"hidden_dropout": 0.0,
|
21 |
+
"hidden_size": 2048,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"layer_norm_epsilon": 1e-05,
|
24 |
+
"max_position_embeddings": 2048,
|
25 |
+
"model_type": "falcon",
|
26 |
+
"multi_query": false,
|
27 |
+
"new_decoder_architecture": false,
|
28 |
+
"num_attention_heads": 32,
|
29 |
+
"num_hidden_layers": 24,
|
30 |
+
"num_kv_heads": 32,
|
31 |
+
"parallel_attn": false,
|
32 |
+
"quantization_config": {
|
33 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
34 |
+
"bnb_4bit_quant_type": "fp4",
|
35 |
+
"bnb_4bit_use_double_quant": true,
|
36 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
37 |
+
"llm_int8_has_fp16_weight": false,
|
38 |
+
"llm_int8_skip_modules": [
|
39 |
+
"lm_head"
|
40 |
+
],
|
41 |
+
"llm_int8_threshold": 6.0,
|
42 |
+
"load_in_4bit": false,
|
43 |
+
"load_in_8bit": true,
|
44 |
+
"quant_method": "bitsandbytes"
|
45 |
+
},
|
46 |
+
"rope_scaling": null,
|
47 |
+
"rope_theta": 10000.0,
|
48 |
+
"torch_dtype": "float16",
|
49 |
+
"transformers_version": "4.37.1",
|
50 |
+
"use_cache": false,
|
51 |
+
"vocab_size": 50304
|
52 |
+
}
|
configuration_falcon.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Falcon configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class FalconConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the
|
33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
51 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
52 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
53 |
+
`config.is_decoder=True`.
|
54 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
55 |
+
The epsilon used by the layer normalization layers.
|
56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for MLP layers.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout probability for attention layers.
|
60 |
+
num_kv_heads (`int`, *optional*):
|
61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
+
`num_attention_heads`.
|
63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to use ALiBi positional biases during self-attention.
|
65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use bias on Linear layers.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
76 |
+
The id of the "beginning-of-sequence" token.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
78 |
+
The id of the "end-of-sequence" token.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import FalconModel, FalconConfig
|
84 |
+
|
85 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
86 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
87 |
+
|
88 |
+
>>> # Initializing a model from the small configuration
|
89 |
+
>>> model = FalconModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
model_type = "falcon"
|
95 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=65024,
|
100 |
+
hidden_size=4544,
|
101 |
+
num_hidden_layers=32,
|
102 |
+
num_attention_heads=71,
|
103 |
+
layer_norm_epsilon=1e-5,
|
104 |
+
initializer_range=0.02,
|
105 |
+
use_cache=True,
|
106 |
+
hidden_dropout=0.0,
|
107 |
+
attention_dropout=0.0,
|
108 |
+
num_kv_heads=None,
|
109 |
+
alibi=False,
|
110 |
+
new_decoder_architecture=False,
|
111 |
+
multi_query=True,
|
112 |
+
parallel_attn=True,
|
113 |
+
bias=False,
|
114 |
+
bos_token_id=11,
|
115 |
+
eos_token_id=11,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
# Backward compatibility with n_embed kwarg
|
120 |
+
n_embed = kwargs.pop("n_embed", None)
|
121 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
125 |
+
self.initializer_range = initializer_range
|
126 |
+
self.use_cache = use_cache
|
127 |
+
self.hidden_dropout = hidden_dropout
|
128 |
+
self.attention_dropout = attention_dropout
|
129 |
+
|
130 |
+
self.bos_token_id = bos_token_id
|
131 |
+
self.eos_token_id = eos_token_id
|
132 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
133 |
+
self.alibi = alibi
|
134 |
+
self.new_decoder_architecture = new_decoder_architecture
|
135 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
136 |
+
self.parallel_attn = parallel_attn
|
137 |
+
self.bias = bias
|
138 |
+
|
139 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
140 |
+
|
141 |
+
@property
|
142 |
+
def head_dim(self):
|
143 |
+
return self.hidden_size // self.num_attention_heads
|
144 |
+
|
145 |
+
@property
|
146 |
+
def rotary(self):
|
147 |
+
return not self.alibi
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbb078c67d43873edaa0ea338b380e6b50cd1f31fdcb44bb4a0b0ddd27fd3acb
|
3 |
+
size 1417103520
|
modeling_falcon.py
ADDED
@@ -0,0 +1,1262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Falcon model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
24 |
+
from torch.nn import functional as F
|
25 |
+
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
CausalLMOutputWithCrossAttentions,
|
29 |
+
QuestionAnsweringModelOutput,
|
30 |
+
SequenceClassifierOutputWithPast,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
35 |
+
from .configuration_falcon import FalconConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
41 |
+
"tiiuae/falcon-40b",
|
42 |
+
"tiiuae/falcon-40b-instruct",
|
43 |
+
"tiiuae/falcon-7b",
|
44 |
+
"tiiuae/falcon-7b-instruct",
|
45 |
+
"tiiuae/falcon-rw-7b",
|
46 |
+
"tiiuae/falcon-rw-1b",
|
47 |
+
]
|
48 |
+
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
49 |
+
_CONFIG_FOR_DOC = "FalconConfig"
|
50 |
+
|
51 |
+
|
52 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
53 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
54 |
+
class FalconLinear(nn.Linear):
|
55 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
56 |
+
hidden_states = input @ self.weight.T
|
57 |
+
if self.bias is None:
|
58 |
+
return hidden_states
|
59 |
+
return hidden_states + self.bias
|
60 |
+
|
61 |
+
|
62 |
+
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
63 |
+
def rotate_half(x):
|
64 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
65 |
+
return torch.cat((-x2, x1), dim=-1)
|
66 |
+
|
67 |
+
|
68 |
+
class FalconRotaryEmbedding(nn.Module):
|
69 |
+
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
70 |
+
This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
|
71 |
+
n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(self, head_dim: int, base=10000):
|
75 |
+
super().__init__()
|
76 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
77 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
78 |
+
self.head_dim = head_dim
|
79 |
+
self.seq_len_cached = -1
|
80 |
+
self.cos_cached: torch.Tensor | None = None
|
81 |
+
self.sin_cached: torch.Tensor | None = None
|
82 |
+
|
83 |
+
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
|
84 |
+
total_length = seq_len + past_key_values_length
|
85 |
+
if total_length > self.seq_len_cached:
|
86 |
+
self.seq_len_cached = total_length
|
87 |
+
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
|
88 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
89 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
90 |
+
|
91 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
92 |
+
emb = emb.float()
|
93 |
+
|
94 |
+
self.cos_cached = emb.cos()[None, :, :]
|
95 |
+
self.sin_cached = emb.sin()[None, :, :]
|
96 |
+
|
97 |
+
self.cos_cached = self.cos_cached.type(dtype)
|
98 |
+
self.sin_cached = self.sin_cached.type(dtype)
|
99 |
+
|
100 |
+
return (
|
101 |
+
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
102 |
+
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, query, key, past_key_values_length=0):
|
106 |
+
batch, seq_len, head_dim = query.shape
|
107 |
+
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
|
108 |
+
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)
|
109 |
+
|
110 |
+
|
111 |
+
def _make_causal_mask(
|
112 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
113 |
+
) -> torch.BoolTensor:
|
114 |
+
"""
|
115 |
+
Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it
|
116 |
+
just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1,
|
117 |
+
target_length, target_length+past_key_values_length]`.
|
118 |
+
"""
|
119 |
+
batch_size, target_length = input_ids_shape
|
120 |
+
|
121 |
+
mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1)
|
122 |
+
# If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op.
|
123 |
+
# This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this
|
124 |
+
# way avoids a data-dependent conditional, which will help me when I have to port this to XLA later.
|
125 |
+
past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device)
|
126 |
+
mask = torch.cat([past_mask, mask], dim=-1)
|
127 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
128 |
+
return expanded_mask
|
129 |
+
|
130 |
+
|
131 |
+
def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
|
132 |
+
"""
|
133 |
+
Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
|
134 |
+
"""
|
135 |
+
batch_size, total_length = mask.shape
|
136 |
+
seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length
|
137 |
+
|
138 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
139 |
+
return expanded_mask.expand(batch_size, 1, seq_length, total_length)
|
140 |
+
|
141 |
+
|
142 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
143 |
+
batch_size, seq_length = attention_mask.shape
|
144 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
145 |
+
base = torch.tensor(
|
146 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
147 |
+
)
|
148 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
149 |
+
slopes = torch.pow(base, powers)
|
150 |
+
|
151 |
+
if closest_power_of_2 != num_heads:
|
152 |
+
extra_base = torch.tensor(
|
153 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
154 |
+
)
|
155 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
156 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
157 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
158 |
+
|
159 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
160 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
161 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
162 |
+
# => the query_length dimension will then be broadcasted correctly
|
163 |
+
# This is more or less identical to T5's relative position bias:
|
164 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
165 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
166 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
167 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
168 |
+
|
169 |
+
|
170 |
+
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
171 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
172 |
+
"""
|
173 |
+
Dropout add function
|
174 |
+
|
175 |
+
Args:
|
176 |
+
x (`torch.tensor`, *required*):
|
177 |
+
input tensor
|
178 |
+
residual (`torch.tensor`, *required*):
|
179 |
+
residual tensor
|
180 |
+
prob (`float`, *required*):
|
181 |
+
dropout probability
|
182 |
+
training (`bool`, *required*):
|
183 |
+
training mode
|
184 |
+
"""
|
185 |
+
out = F.dropout(x, p=prob, training=training)
|
186 |
+
out = residual + out
|
187 |
+
return out
|
188 |
+
|
189 |
+
|
190 |
+
class FalconAttention(nn.Module):
|
191 |
+
def __init__(self, config: FalconConfig):
|
192 |
+
super().__init__()
|
193 |
+
|
194 |
+
self.hidden_size = config.hidden_size
|
195 |
+
self.num_heads = config.num_attention_heads
|
196 |
+
self.head_dim = self.hidden_size // self.num_heads
|
197 |
+
self.split_size = self.hidden_size
|
198 |
+
self.hidden_dropout = config.hidden_dropout
|
199 |
+
|
200 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
201 |
+
raise ValueError(
|
202 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
203 |
+
f" {self.num_heads})."
|
204 |
+
)
|
205 |
+
|
206 |
+
self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)
|
207 |
+
|
208 |
+
# Layer-wise attention scaling
|
209 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
210 |
+
self.beta = self.inv_norm_factor
|
211 |
+
if config.new_decoder_architecture:
|
212 |
+
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
213 |
+
elif config.multi_query:
|
214 |
+
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
215 |
+
else:
|
216 |
+
qkv_out_dim = 3 * self.hidden_size
|
217 |
+
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
218 |
+
self.new_decoder_architecture = config.new_decoder_architecture
|
219 |
+
self.multi_query = config.multi_query
|
220 |
+
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
221 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
222 |
+
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
223 |
+
|
224 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
225 |
+
"""
|
226 |
+
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
227 |
+
|
228 |
+
Args:
|
229 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
233 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
234 |
+
"""
|
235 |
+
if self.new_decoder_architecture:
|
236 |
+
batch, seq_len, _ = fused_qkv.shape
|
237 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
238 |
+
query = qkv[:, :, :, :-2]
|
239 |
+
key = qkv[:, :, :, [-2]]
|
240 |
+
value = qkv[:, :, :, [-1]]
|
241 |
+
key = torch.broadcast_to(key, query.shape)
|
242 |
+
value = torch.broadcast_to(value, query.shape)
|
243 |
+
|
244 |
+
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
245 |
+
return query, key, value
|
246 |
+
elif not self.multi_query:
|
247 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
248 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
249 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
250 |
+
else:
|
251 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
252 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
253 |
+
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
254 |
+
|
255 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
256 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
257 |
+
"""
|
258 |
+
Merge heads together over the last dimenstion
|
259 |
+
|
260 |
+
Args:
|
261 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
265 |
+
"""
|
266 |
+
# What we want to achieve is:
|
267 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
268 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
269 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
270 |
+
|
271 |
+
# First view to decompose the batch size
|
272 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
273 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
274 |
+
|
275 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
276 |
+
x = x.permute(0, 2, 1, 3)
|
277 |
+
|
278 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
279 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
280 |
+
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
hidden_states: torch.Tensor,
|
284 |
+
alibi: Optional[torch.Tensor],
|
285 |
+
attention_mask: torch.Tensor,
|
286 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
287 |
+
head_mask: Optional[torch.Tensor] = None,
|
288 |
+
use_cache: bool = False,
|
289 |
+
output_attentions: bool = False,
|
290 |
+
):
|
291 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
292 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
293 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
294 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
295 |
+
|
296 |
+
batch_size, query_length, _, _ = query_layer.shape
|
297 |
+
|
298 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
299 |
+
key_layer = key_layer.transpose(1, 2).reshape(
|
300 |
+
batch_size * num_kv_heads,
|
301 |
+
query_length,
|
302 |
+
self.head_dim,
|
303 |
+
)
|
304 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)
|
305 |
+
|
306 |
+
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
|
307 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
|
308 |
+
|
309 |
+
if layer_past is not None:
|
310 |
+
past_key, past_value = layer_past
|
311 |
+
# concatenate along seq_length dimension:
|
312 |
+
# - key: [batch_size * self.num_heads, kv_length, head_dim]
|
313 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
314 |
+
key_layer = torch.cat((past_key, key_layer), dim=1)
|
315 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
316 |
+
|
317 |
+
_, kv_length, _ = key_layer.shape
|
318 |
+
if use_cache:
|
319 |
+
present = (key_layer, value_layer)
|
320 |
+
else:
|
321 |
+
present = None
|
322 |
+
|
323 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
|
324 |
+
|
325 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
326 |
+
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
327 |
+
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
328 |
+
|
329 |
+
if alibi is None:
|
330 |
+
if output_attentions:
|
331 |
+
# F.scaled_dot_product_attention doesn't return the attention weights, so we have
|
332 |
+
# to do it by hand if we want them
|
333 |
+
attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
|
334 |
+
attention_scores /= math.sqrt(self.head_dim)
|
335 |
+
|
336 |
+
attention_scores = F.softmax(
|
337 |
+
attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
|
338 |
+
)
|
339 |
+
attn_output = attention_scores @ value_layer_
|
340 |
+
else:
|
341 |
+
attn_output = F.scaled_dot_product_attention(
|
342 |
+
query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False
|
343 |
+
)
|
344 |
+
attention_scores = None
|
345 |
+
|
346 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
347 |
+
attn_output = attn_output.permute(0, 2, 1, 3)
|
348 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
349 |
+
|
350 |
+
output_tensor = self.dense(attn_output)
|
351 |
+
|
352 |
+
if output_attentions:
|
353 |
+
return output_tensor, present, attention_scores
|
354 |
+
else:
|
355 |
+
return output_tensor, present
|
356 |
+
|
357 |
+
else:
|
358 |
+
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
|
359 |
+
|
360 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
361 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
362 |
+
|
363 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
364 |
+
input_dtype = attention_scores.dtype
|
365 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
366 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
367 |
+
attention_scores = attention_scores.to(torch.float32)
|
368 |
+
# Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
|
369 |
+
# adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
|
370 |
+
# equivalent and more performant, but there might be a numerical difference. If you're reading this
|
371 |
+
# and you'd like to experiment and maybe file a PR, feel free!
|
372 |
+
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
373 |
+
attention_logits *= self.inv_norm_factor
|
374 |
+
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
|
375 |
+
# [batch_size, num_heads, q_length, kv_length]
|
376 |
+
attention_probs = self.attention_dropout(attention_probs)
|
377 |
+
|
378 |
+
if head_mask is not None:
|
379 |
+
attention_probs = attention_probs * head_mask
|
380 |
+
|
381 |
+
# change view [batch_size, num_heads, q_length, kv_length]
|
382 |
+
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
383 |
+
|
384 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
385 |
+
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
|
386 |
+
|
387 |
+
# change view [batch_size, num_heads, q_length, head_dim]
|
388 |
+
context_layer = self._merge_heads(context_layer)
|
389 |
+
|
390 |
+
output_tensor = self.dense(context_layer)
|
391 |
+
|
392 |
+
if output_attentions:
|
393 |
+
return output_tensor, present, attention_probs
|
394 |
+
else:
|
395 |
+
return output_tensor, present
|
396 |
+
|
397 |
+
|
398 |
+
class FalconMLP(nn.Module):
|
399 |
+
def __init__(self, config: FalconConfig):
|
400 |
+
super().__init__()
|
401 |
+
hidden_size = config.hidden_size
|
402 |
+
|
403 |
+
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
|
404 |
+
self.act = nn.GELU()
|
405 |
+
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
|
406 |
+
self.hidden_dropout = config.hidden_dropout
|
407 |
+
|
408 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
409 |
+
x = self.act(self.dense_h_to_4h(x))
|
410 |
+
x = self.dense_4h_to_h(x)
|
411 |
+
return x
|
412 |
+
|
413 |
+
|
414 |
+
class FalconDecoderLayer(nn.Module):
|
415 |
+
def __init__(self, config: FalconConfig):
|
416 |
+
super().__init__()
|
417 |
+
hidden_size = config.hidden_size
|
418 |
+
self.num_heads = config.num_attention_heads
|
419 |
+
self.self_attention = FalconAttention(config)
|
420 |
+
self.mlp = FalconMLP(config)
|
421 |
+
self.hidden_dropout = config.hidden_dropout
|
422 |
+
self.config = config
|
423 |
+
|
424 |
+
if config.new_decoder_architecture:
|
425 |
+
# The layer norm before self-attention
|
426 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
427 |
+
# The layer norm before the MLP
|
428 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
429 |
+
else:
|
430 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
431 |
+
if not config.parallel_attn:
|
432 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
433 |
+
|
434 |
+
def forward(
|
435 |
+
self,
|
436 |
+
hidden_states: torch.Tensor,
|
437 |
+
alibi: Optional[torch.Tensor],
|
438 |
+
attention_mask: torch.Tensor,
|
439 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
440 |
+
head_mask: Optional[torch.Tensor] = None,
|
441 |
+
use_cache: bool = False,
|
442 |
+
output_attentions: bool = False,
|
443 |
+
):
|
444 |
+
residual = hidden_states
|
445 |
+
|
446 |
+
if self.config.new_decoder_architecture:
|
447 |
+
attention_layernorm_out = self.ln_attn(hidden_states)
|
448 |
+
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
449 |
+
else:
|
450 |
+
attention_layernorm_out = self.input_layernorm(hidden_states)
|
451 |
+
|
452 |
+
# Self attention.
|
453 |
+
attn_outputs = self.self_attention(
|
454 |
+
attention_layernorm_out,
|
455 |
+
layer_past=layer_past,
|
456 |
+
attention_mask=attention_mask,
|
457 |
+
alibi=alibi,
|
458 |
+
head_mask=head_mask,
|
459 |
+
use_cache=use_cache,
|
460 |
+
output_attentions=output_attentions,
|
461 |
+
)
|
462 |
+
|
463 |
+
attention_output = attn_outputs[0]
|
464 |
+
|
465 |
+
if not self.config.new_decoder_architecture:
|
466 |
+
if self.config.parallel_attn:
|
467 |
+
mlp_layernorm_out = attention_layernorm_out
|
468 |
+
else:
|
469 |
+
residual = dropout_add(
|
470 |
+
attention_output, residual, self.config.attention_dropout, training=self.training
|
471 |
+
)
|
472 |
+
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
473 |
+
|
474 |
+
outputs = attn_outputs[1:]
|
475 |
+
|
476 |
+
# MLP.
|
477 |
+
mlp_output = self.mlp(mlp_layernorm_out)
|
478 |
+
|
479 |
+
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
480 |
+
mlp_output += attention_output
|
481 |
+
|
482 |
+
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
483 |
+
|
484 |
+
if use_cache:
|
485 |
+
outputs = (output,) + outputs
|
486 |
+
else:
|
487 |
+
outputs = (output,) + outputs[1:]
|
488 |
+
|
489 |
+
return outputs # hidden_states, present, attentions
|
490 |
+
|
491 |
+
|
492 |
+
FALCON_START_DOCSTRING = r"""
|
493 |
+
|
494 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
495 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
496 |
+
|
497 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
498 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
499 |
+
and behavior.
|
500 |
+
|
501 |
+
Parameters:
|
502 |
+
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
503 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
504 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
505 |
+
"""
|
506 |
+
|
507 |
+
FALCON_INPUTS_DOCSTRING = r"""
|
508 |
+
Args:
|
509 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
510 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
511 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
512 |
+
|
513 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
514 |
+
`input_ids`.
|
515 |
+
|
516 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
517 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
518 |
+
|
519 |
+
[What are input IDs?](../glossary#input-ids)
|
520 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
521 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
522 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
523 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
524 |
+
|
525 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
526 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
527 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
528 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
529 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
530 |
+
|
531 |
+
- 1 for tokens that are **not masked**,
|
532 |
+
- 0 for tokens that are **masked**.
|
533 |
+
|
534 |
+
[What are attention masks?](../glossary#attention-mask)
|
535 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
536 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
537 |
+
|
538 |
+
- 1 indicates the head is **not masked**,
|
539 |
+
- 0 indicates the head is **masked**.
|
540 |
+
|
541 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
542 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
543 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
544 |
+
model's internal embedding lookup matrix.
|
545 |
+
|
546 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
547 |
+
`past_key_values`).
|
548 |
+
use_cache (`bool`, *optional*):
|
549 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
550 |
+
`past_key_values`).
|
551 |
+
output_attentions (`bool`, *optional*):
|
552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
553 |
+
tensors for more detail.
|
554 |
+
output_hidden_states (`bool`, *optional*):
|
555 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
556 |
+
more detail.
|
557 |
+
return_dict (`bool`, *optional*):
|
558 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
559 |
+
"""
|
560 |
+
|
561 |
+
|
562 |
+
class FalconPreTrainedModel(PreTrainedModel):
|
563 |
+
"""
|
564 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
565 |
+
models.
|
566 |
+
"""
|
567 |
+
|
568 |
+
config_class = FalconConfig
|
569 |
+
base_model_prefix = "transformer"
|
570 |
+
supports_gradient_checkpointing = True
|
571 |
+
_no_split_modules = ["FalconDecoderLayer"]
|
572 |
+
|
573 |
+
def __init__(self, *inputs, **kwargs):
|
574 |
+
super().__init__(*inputs, **kwargs)
|
575 |
+
|
576 |
+
def _init_weights(self, module: nn.Module):
|
577 |
+
"""Initialize the weights."""
|
578 |
+
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
579 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
580 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
581 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
582 |
+
if module.bias is not None:
|
583 |
+
module.bias.data.zero_()
|
584 |
+
elif isinstance(module, nn.Embedding):
|
585 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
586 |
+
if module.padding_idx is not None:
|
587 |
+
module.weight.data[module.padding_idx].zero_()
|
588 |
+
elif isinstance(module, LayerNorm):
|
589 |
+
module.bias.data.zero_()
|
590 |
+
module.weight.data.fill_(1.0)
|
591 |
+
|
592 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel
|
593 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
594 |
+
if isinstance(module, FalconModel):
|
595 |
+
module.gradient_checkpointing = value
|
596 |
+
|
597 |
+
@staticmethod
|
598 |
+
def _convert_cache_to_standard_format(
|
599 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
600 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
601 |
+
"""
|
602 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
603 |
+
num_heads, ...]))
|
604 |
+
"""
|
605 |
+
batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
606 |
+
# [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim]
|
607 |
+
# Note that don't want to use self.num_attention_heads because the number of heads may vary depending
|
608 |
+
# on whether we use multi_query attention.
|
609 |
+
num_heads = batch_size_times_num_heads // batch_size
|
610 |
+
return tuple(
|
611 |
+
(
|
612 |
+
layer_past[0].view(batch_size, num_heads, kv_length, head_dim),
|
613 |
+
layer_past[1].view(batch_size, num_heads, kv_length, head_dim),
|
614 |
+
)
|
615 |
+
for layer_past in past_key_value
|
616 |
+
)
|
617 |
+
|
618 |
+
@staticmethod
|
619 |
+
def _convert_to_rw_cache(
|
620 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
621 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
622 |
+
batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
623 |
+
batch_size_times_num_heads = batch_size * num_heads
|
624 |
+
# [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim]
|
625 |
+
return tuple(
|
626 |
+
(
|
627 |
+
layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim),
|
628 |
+
layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim),
|
629 |
+
)
|
630 |
+
for layer_past in past_key_value
|
631 |
+
)
|
632 |
+
|
633 |
+
|
634 |
+
@add_start_docstrings(
|
635 |
+
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
636 |
+
FALCON_START_DOCSTRING,
|
637 |
+
)
|
638 |
+
class FalconModel(FalconPreTrainedModel):
|
639 |
+
def __init__(self, config: FalconConfig):
|
640 |
+
super().__init__(config)
|
641 |
+
|
642 |
+
self.embed_dim = config.hidden_size
|
643 |
+
self.num_heads = config.num_attention_heads
|
644 |
+
self.use_alibi = config.alibi
|
645 |
+
|
646 |
+
# Embedding + LN Embedding
|
647 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
648 |
+
|
649 |
+
# Transformer blocks
|
650 |
+
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
651 |
+
|
652 |
+
# Final Layer Norm
|
653 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
654 |
+
|
655 |
+
self.gradient_checkpointing = False
|
656 |
+
|
657 |
+
# Initialize weights and apply final processing
|
658 |
+
self.post_init()
|
659 |
+
|
660 |
+
def get_input_embeddings(self):
|
661 |
+
return self.word_embeddings
|
662 |
+
|
663 |
+
@staticmethod
|
664 |
+
def _prepare_attn_mask(
|
665 |
+
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
666 |
+
) -> torch.BoolTensor:
|
667 |
+
# Create a causal mask
|
668 |
+
# The attention mask we receive as input should cover the whole extended sequence, including any past
|
669 |
+
# cache, so its shape should be [batch_size, seq_length + past_key_values_length]
|
670 |
+
# The output shape will be [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
671 |
+
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
|
672 |
+
raise ValueError(
|
673 |
+
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
|
674 |
+
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
|
675 |
+
f" {past_key_values_length}."
|
676 |
+
)
|
677 |
+
combined_attention_mask = None
|
678 |
+
device = attention_mask.device
|
679 |
+
_, seq_length = input_shape
|
680 |
+
|
681 |
+
if seq_length > 1:
|
682 |
+
combined_attention_mask = _make_causal_mask(
|
683 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
684 |
+
)
|
685 |
+
|
686 |
+
# [batch_size, seq_length + past_key_values_length] -> [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
687 |
+
expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length)
|
688 |
+
combined_attention_mask = (
|
689 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
690 |
+
)
|
691 |
+
|
692 |
+
return combined_attention_mask
|
693 |
+
|
694 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
695 |
+
self.word_embeddings = new_embeddings
|
696 |
+
|
697 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
698 |
+
@add_code_sample_docstrings(
|
699 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
700 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
701 |
+
config_class=_CONFIG_FOR_DOC,
|
702 |
+
)
|
703 |
+
def forward(
|
704 |
+
self,
|
705 |
+
input_ids: Optional[torch.LongTensor] = None,
|
706 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
707 |
+
attention_mask: Optional[torch.Tensor] = None,
|
708 |
+
head_mask: Optional[torch.LongTensor] = None,
|
709 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
710 |
+
use_cache: Optional[bool] = None,
|
711 |
+
output_attentions: Optional[bool] = None,
|
712 |
+
output_hidden_states: Optional[bool] = None,
|
713 |
+
return_dict: Optional[bool] = None,
|
714 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
715 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
716 |
+
output_hidden_states = (
|
717 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
718 |
+
)
|
719 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
720 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
721 |
+
|
722 |
+
if input_ids is not None and inputs_embeds is not None:
|
723 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
724 |
+
elif input_ids is not None:
|
725 |
+
batch_size, seq_length = input_ids.shape
|
726 |
+
elif inputs_embeds is not None:
|
727 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
728 |
+
else:
|
729 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
730 |
+
|
731 |
+
if past_key_values is None:
|
732 |
+
past_key_values = tuple([None] * len(self.h))
|
733 |
+
else:
|
734 |
+
past_key_values = self._convert_to_rw_cache(past_key_values)
|
735 |
+
|
736 |
+
# Prepare head mask if needed
|
737 |
+
# 1.0 in head_mask indicate we keep the head
|
738 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
739 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
740 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
741 |
+
|
742 |
+
if inputs_embeds is None:
|
743 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
744 |
+
|
745 |
+
hidden_states = inputs_embeds
|
746 |
+
|
747 |
+
presents = () if use_cache else None
|
748 |
+
all_self_attentions = () if output_attentions else None
|
749 |
+
all_hidden_states = () if output_hidden_states else None
|
750 |
+
|
751 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
752 |
+
past_key_values_length = 0
|
753 |
+
if past_key_values[0] is not None:
|
754 |
+
past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format
|
755 |
+
if attention_mask is None:
|
756 |
+
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device)
|
757 |
+
else:
|
758 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
759 |
+
|
760 |
+
if self.use_alibi:
|
761 |
+
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
762 |
+
else:
|
763 |
+
alibi = None
|
764 |
+
|
765 |
+
causal_mask = self._prepare_attn_mask(
|
766 |
+
attention_mask,
|
767 |
+
input_shape=(batch_size, seq_length),
|
768 |
+
past_key_values_length=past_key_values_length,
|
769 |
+
)
|
770 |
+
|
771 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
772 |
+
if output_hidden_states:
|
773 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
774 |
+
|
775 |
+
if self.gradient_checkpointing and self.training:
|
776 |
+
if use_cache:
|
777 |
+
logger.warning(
|
778 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
779 |
+
)
|
780 |
+
use_cache = False
|
781 |
+
|
782 |
+
def create_custom_forward(module):
|
783 |
+
def custom_forward(*inputs):
|
784 |
+
# None for past_key_value
|
785 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
786 |
+
|
787 |
+
return custom_forward
|
788 |
+
|
789 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
790 |
+
create_custom_forward(block),
|
791 |
+
hidden_states,
|
792 |
+
alibi,
|
793 |
+
causal_mask,
|
794 |
+
head_mask[i],
|
795 |
+
)
|
796 |
+
else:
|
797 |
+
outputs = block(
|
798 |
+
hidden_states,
|
799 |
+
layer_past=layer_past,
|
800 |
+
attention_mask=causal_mask,
|
801 |
+
head_mask=head_mask[i],
|
802 |
+
use_cache=use_cache,
|
803 |
+
output_attentions=output_attentions,
|
804 |
+
alibi=alibi,
|
805 |
+
)
|
806 |
+
|
807 |
+
hidden_states = outputs[0]
|
808 |
+
if use_cache is True:
|
809 |
+
presents = presents + (outputs[1],)
|
810 |
+
|
811 |
+
if output_attentions:
|
812 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
813 |
+
|
814 |
+
# Add last hidden state
|
815 |
+
hidden_states = self.ln_f(hidden_states)
|
816 |
+
|
817 |
+
if output_hidden_states:
|
818 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
819 |
+
|
820 |
+
if presents is not None:
|
821 |
+
presents = self._convert_cache_to_standard_format(presents, batch_size)
|
822 |
+
|
823 |
+
if not return_dict:
|
824 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
825 |
+
|
826 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
827 |
+
last_hidden_state=hidden_states,
|
828 |
+
past_key_values=presents,
|
829 |
+
hidden_states=all_hidden_states,
|
830 |
+
attentions=all_self_attentions,
|
831 |
+
)
|
832 |
+
|
833 |
+
|
834 |
+
@add_start_docstrings(
|
835 |
+
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
836 |
+
FALCON_START_DOCSTRING,
|
837 |
+
)
|
838 |
+
class FalconForCausalLM(FalconPreTrainedModel):
|
839 |
+
_tied_weights_keys = ["lm_head.weight"]
|
840 |
+
|
841 |
+
def __init__(self, config: FalconConfig):
|
842 |
+
super().__init__(config)
|
843 |
+
self.transformer = FalconModel(config)
|
844 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
845 |
+
|
846 |
+
# Initialize weights and apply final processing
|
847 |
+
self.post_init()
|
848 |
+
|
849 |
+
def get_output_embeddings(self):
|
850 |
+
return self.lm_head
|
851 |
+
|
852 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
853 |
+
self.lm_head = new_embeddings
|
854 |
+
|
855 |
+
def prepare_inputs_for_generation(
|
856 |
+
self,
|
857 |
+
input_ids: torch.LongTensor,
|
858 |
+
past_key_values: Optional[torch.Tensor] = None,
|
859 |
+
attention_mask: Optional[torch.Tensor] = None,
|
860 |
+
**kwargs,
|
861 |
+
) -> dict:
|
862 |
+
if past_key_values is not None:
|
863 |
+
input_ids = input_ids[:, -1:]
|
864 |
+
|
865 |
+
return {
|
866 |
+
"input_ids": input_ids,
|
867 |
+
"past_key_values": past_key_values,
|
868 |
+
"use_cache": kwargs.get("use_cache"),
|
869 |
+
"attention_mask": attention_mask,
|
870 |
+
}
|
871 |
+
|
872 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
873 |
+
@add_code_sample_docstrings(
|
874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
875 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
876 |
+
config_class=_CONFIG_FOR_DOC,
|
877 |
+
)
|
878 |
+
def forward(
|
879 |
+
self,
|
880 |
+
input_ids: Optional[torch.LongTensor] = None,
|
881 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
882 |
+
attention_mask: Optional[torch.Tensor] = None,
|
883 |
+
head_mask: Optional[torch.Tensor] = None,
|
884 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
885 |
+
labels: Optional[torch.Tensor] = None,
|
886 |
+
use_cache: Optional[bool] = None,
|
887 |
+
output_attentions: Optional[bool] = None,
|
888 |
+
output_hidden_states: Optional[bool] = None,
|
889 |
+
return_dict: Optional[bool] = None,
|
890 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
891 |
+
r"""
|
892 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
893 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
894 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
895 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
896 |
+
"""
|
897 |
+
|
898 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
899 |
+
|
900 |
+
transformer_outputs = self.transformer(
|
901 |
+
input_ids,
|
902 |
+
past_key_values=past_key_values,
|
903 |
+
attention_mask=attention_mask,
|
904 |
+
head_mask=head_mask,
|
905 |
+
inputs_embeds=inputs_embeds,
|
906 |
+
use_cache=use_cache,
|
907 |
+
output_attentions=output_attentions,
|
908 |
+
output_hidden_states=output_hidden_states,
|
909 |
+
return_dict=return_dict,
|
910 |
+
)
|
911 |
+
hidden_states = transformer_outputs[0]
|
912 |
+
|
913 |
+
lm_logits = self.lm_head(hidden_states)
|
914 |
+
|
915 |
+
loss = None
|
916 |
+
if labels is not None:
|
917 |
+
# Shift so that tokens < n predict n
|
918 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
919 |
+
shift_labels = labels[..., 1:].contiguous()
|
920 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
921 |
+
# Flatten the tokens
|
922 |
+
loss_fct = CrossEntropyLoss()
|
923 |
+
loss = loss_fct(
|
924 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
925 |
+
)
|
926 |
+
|
927 |
+
if not return_dict:
|
928 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
929 |
+
return ((loss,) + output) if loss is not None else output
|
930 |
+
|
931 |
+
return CausalLMOutputWithCrossAttentions(
|
932 |
+
loss=loss,
|
933 |
+
logits=lm_logits,
|
934 |
+
past_key_values=transformer_outputs.past_key_values,
|
935 |
+
hidden_states=transformer_outputs.hidden_states,
|
936 |
+
attentions=transformer_outputs.attentions,
|
937 |
+
)
|
938 |
+
|
939 |
+
def _reorder_cache(
|
940 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
941 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
942 |
+
"""
|
943 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
944 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
945 |
+
beam_idx at every generation step.
|
946 |
+
|
947 |
+
Output shares the same memory storage as `past`.
|
948 |
+
"""
|
949 |
+
|
950 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
951 |
+
device_to_beam_idx = {
|
952 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
953 |
+
}
|
954 |
+
reordered_past = tuple(
|
955 |
+
(
|
956 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
957 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
958 |
+
)
|
959 |
+
for layer_past in past
|
960 |
+
)
|
961 |
+
return reordered_past
|
962 |
+
|
963 |
+
|
964 |
+
@add_start_docstrings(
|
965 |
+
"""
|
966 |
+
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
967 |
+
|
968 |
+
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
969 |
+
(e.g. GPT-1) do.
|
970 |
+
|
971 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
972 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
973 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
974 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
975 |
+
each row of the batch).
|
976 |
+
""",
|
977 |
+
FALCON_START_DOCSTRING,
|
978 |
+
)
|
979 |
+
class FalconForSequenceClassification(FalconPreTrainedModel):
|
980 |
+
def __init__(self, config: FalconConfig):
|
981 |
+
super().__init__(config)
|
982 |
+
self.num_labels = config.num_labels
|
983 |
+
self.transformer = FalconModel(config)
|
984 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
985 |
+
|
986 |
+
# Initialize weights and apply final processing
|
987 |
+
self.post_init()
|
988 |
+
|
989 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
990 |
+
@add_code_sample_docstrings(
|
991 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
992 |
+
output_type=SequenceClassifierOutputWithPast,
|
993 |
+
config_class=_CONFIG_FOR_DOC,
|
994 |
+
)
|
995 |
+
def forward(
|
996 |
+
self,
|
997 |
+
input_ids: Optional[torch.LongTensor] = None,
|
998 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
999 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1000 |
+
head_mask: Optional[torch.Tensor] = None,
|
1001 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1002 |
+
labels: Optional[torch.Tensor] = None,
|
1003 |
+
use_cache: Optional[bool] = None,
|
1004 |
+
output_attentions: Optional[bool] = None,
|
1005 |
+
output_hidden_states: Optional[bool] = None,
|
1006 |
+
return_dict: Optional[bool] = None,
|
1007 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1008 |
+
r"""
|
1009 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1010 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1011 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1012 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1013 |
+
"""
|
1014 |
+
|
1015 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1016 |
+
|
1017 |
+
transformer_outputs = self.transformer(
|
1018 |
+
input_ids,
|
1019 |
+
past_key_values=past_key_values,
|
1020 |
+
attention_mask=attention_mask,
|
1021 |
+
head_mask=head_mask,
|
1022 |
+
inputs_embeds=inputs_embeds,
|
1023 |
+
use_cache=use_cache,
|
1024 |
+
output_attentions=output_attentions,
|
1025 |
+
output_hidden_states=output_hidden_states,
|
1026 |
+
return_dict=return_dict,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
hidden_states = transformer_outputs[0]
|
1030 |
+
logits = self.score(hidden_states)
|
1031 |
+
|
1032 |
+
if input_ids is not None:
|
1033 |
+
batch_size = input_ids.shape[0]
|
1034 |
+
else:
|
1035 |
+
batch_size = inputs_embeds.shape[0]
|
1036 |
+
|
1037 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1038 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1039 |
+
if self.config.pad_token_id is None:
|
1040 |
+
sequence_lengths = -1
|
1041 |
+
else:
|
1042 |
+
if input_ids is not None:
|
1043 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
|
1044 |
+
else:
|
1045 |
+
sequence_lengths = -1
|
1046 |
+
logger.warning(
|
1047 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1048 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1052 |
+
|
1053 |
+
loss = None
|
1054 |
+
if labels is not None:
|
1055 |
+
if self.config.problem_type is None:
|
1056 |
+
if self.num_labels == 1:
|
1057 |
+
self.config.problem_type = "regression"
|
1058 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1059 |
+
self.config.problem_type = "single_label_classification"
|
1060 |
+
else:
|
1061 |
+
self.config.problem_type = "multi_label_classification"
|
1062 |
+
|
1063 |
+
if self.config.problem_type == "regression":
|
1064 |
+
loss_fct = MSELoss()
|
1065 |
+
if self.num_labels == 1:
|
1066 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1067 |
+
else:
|
1068 |
+
loss = loss_fct(pooled_logits, labels)
|
1069 |
+
elif self.config.problem_type == "single_label_classification":
|
1070 |
+
loss_fct = CrossEntropyLoss()
|
1071 |
+
loss = loss_fct(pooled_logits, labels)
|
1072 |
+
elif self.config.problem_type == "multi_label_classification":
|
1073 |
+
loss_fct = BCEWithLogitsLoss()
|
1074 |
+
loss = loss_fct(pooled_logits, labels)
|
1075 |
+
if not return_dict:
|
1076 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1077 |
+
return ((loss,) + output) if loss is not None else output
|
1078 |
+
|
1079 |
+
return SequenceClassifierOutputWithPast(
|
1080 |
+
loss=loss,
|
1081 |
+
logits=pooled_logits,
|
1082 |
+
past_key_values=transformer_outputs.past_key_values,
|
1083 |
+
hidden_states=transformer_outputs.hidden_states,
|
1084 |
+
attentions=transformer_outputs.attentions,
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
|
1088 |
+
@add_start_docstrings(
|
1089 |
+
"""
|
1090 |
+
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1091 |
+
Named-Entity-Recognition (NER) tasks.
|
1092 |
+
""",
|
1093 |
+
FALCON_START_DOCSTRING,
|
1094 |
+
)
|
1095 |
+
class FalconForTokenClassification(FalconPreTrainedModel):
|
1096 |
+
def __init__(self, config: FalconConfig):
|
1097 |
+
super().__init__(config)
|
1098 |
+
self.num_labels = config.num_labels
|
1099 |
+
|
1100 |
+
self.transformer = FalconModel(config)
|
1101 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1102 |
+
classifier_dropout = config.classifier_dropout
|
1103 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1104 |
+
classifier_dropout = config.hidden_dropout
|
1105 |
+
else:
|
1106 |
+
classifier_dropout = 0.1
|
1107 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1108 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1109 |
+
|
1110 |
+
# Initialize weights and apply final processing
|
1111 |
+
self.post_init()
|
1112 |
+
|
1113 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1114 |
+
@add_code_sample_docstrings(
|
1115 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1116 |
+
output_type=TokenClassifierOutput,
|
1117 |
+
config_class=_CONFIG_FOR_DOC,
|
1118 |
+
)
|
1119 |
+
def forward(
|
1120 |
+
self,
|
1121 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1122 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1123 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1124 |
+
head_mask: Optional[torch.Tensor] = None,
|
1125 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1126 |
+
labels: Optional[torch.Tensor] = None,
|
1127 |
+
use_cache: Optional[bool] = None,
|
1128 |
+
output_attentions: Optional[bool] = None,
|
1129 |
+
output_hidden_states: Optional[bool] = None,
|
1130 |
+
return_dict: Optional[bool] = None,
|
1131 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1132 |
+
r"""
|
1133 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1134 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1135 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1136 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1137 |
+
"""
|
1138 |
+
|
1139 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1140 |
+
|
1141 |
+
transformer_outputs = self.transformer(
|
1142 |
+
input_ids,
|
1143 |
+
past_key_values=past_key_values,
|
1144 |
+
attention_mask=attention_mask,
|
1145 |
+
head_mask=head_mask,
|
1146 |
+
inputs_embeds=inputs_embeds,
|
1147 |
+
use_cache=use_cache,
|
1148 |
+
output_attentions=output_attentions,
|
1149 |
+
output_hidden_states=output_hidden_states,
|
1150 |
+
return_dict=return_dict,
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
hidden_states = transformer_outputs[0]
|
1154 |
+
hidden_states = self.dropout(hidden_states)
|
1155 |
+
logits = self.classifier(hidden_states)
|
1156 |
+
|
1157 |
+
loss = None
|
1158 |
+
if labels is not None:
|
1159 |
+
batch_size, seq_length = labels.shape
|
1160 |
+
loss_fct = CrossEntropyLoss()
|
1161 |
+
loss = loss_fct(
|
1162 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
if not return_dict:
|
1166 |
+
output = (logits,) + transformer_outputs[2:]
|
1167 |
+
return ((loss,) + output) if loss is not None else output
|
1168 |
+
|
1169 |
+
return TokenClassifierOutput(
|
1170 |
+
loss=loss,
|
1171 |
+
logits=logits,
|
1172 |
+
hidden_states=transformer_outputs.hidden_states,
|
1173 |
+
attentions=transformer_outputs.attentions,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
|
1177 |
+
@add_start_docstrings(
|
1178 |
+
"""
|
1179 |
+
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
1180 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1181 |
+
""",
|
1182 |
+
FALCON_START_DOCSTRING,
|
1183 |
+
)
|
1184 |
+
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
1185 |
+
def __init__(self, config):
|
1186 |
+
super().__init__(config)
|
1187 |
+
self.transformer = FalconModel(config)
|
1188 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1189 |
+
|
1190 |
+
# Initialize weights and apply final processing
|
1191 |
+
self.post_init()
|
1192 |
+
|
1193 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
1194 |
+
def forward(
|
1195 |
+
self,
|
1196 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1197 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1198 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1199 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1200 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1201 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1202 |
+
output_attentions: Optional[bool] = None,
|
1203 |
+
output_hidden_states: Optional[bool] = None,
|
1204 |
+
return_dict: Optional[bool] = None,
|
1205 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1206 |
+
r"""
|
1207 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1208 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1209 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1210 |
+
are not taken into account for computing the loss.
|
1211 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1212 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1213 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1214 |
+
are not taken into account for computing the loss.
|
1215 |
+
"""
|
1216 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1217 |
+
|
1218 |
+
outputs = self.transformer(
|
1219 |
+
input_ids,
|
1220 |
+
attention_mask=attention_mask,
|
1221 |
+
head_mask=head_mask,
|
1222 |
+
inputs_embeds=inputs_embeds,
|
1223 |
+
output_attentions=output_attentions,
|
1224 |
+
output_hidden_states=output_hidden_states,
|
1225 |
+
return_dict=return_dict,
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
sequence_output = outputs[0]
|
1229 |
+
|
1230 |
+
logits = self.qa_outputs(sequence_output)
|
1231 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1232 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1233 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1234 |
+
|
1235 |
+
total_loss = None
|
1236 |
+
if start_positions is not None and end_positions is not None:
|
1237 |
+
# If we are on multi-GPU, split add a dimension
|
1238 |
+
if len(start_positions.size()) > 1:
|
1239 |
+
start_positions = start_positions.squeeze(-1)
|
1240 |
+
if len(end_positions.size()) > 1:
|
1241 |
+
end_positions = end_positions.squeeze(-1)
|
1242 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1243 |
+
ignored_index = start_logits.size(1)
|
1244 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1245 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1246 |
+
|
1247 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1248 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1249 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1250 |
+
total_loss = (start_loss + end_loss) / 2
|
1251 |
+
|
1252 |
+
if not return_dict:
|
1253 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1254 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1255 |
+
|
1256 |
+
return QuestionAnsweringModelOutput(
|
1257 |
+
loss=total_loss,
|
1258 |
+
start_logits=start_logits,
|
1259 |
+
end_logits=end_logits,
|
1260 |
+
hidden_states=outputs.hidden_states,
|
1261 |
+
attentions=outputs.attentions,
|
1262 |
+
)
|
plots.png
ADDED
smash_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"factorizers": "None",
|
7 |
+
"quantizers": "['llm-int8']",
|
8 |
+
"compilers": "None",
|
9 |
+
"task": "text_text_generation",
|
10 |
+
"device": "cuda",
|
11 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/models3xuuh_hy",
|
12 |
+
"batch_size": 1,
|
13 |
+
"model_name": "euclaise/falcon_1b_stage2",
|
14 |
+
"pruning_ratio": 0.0,
|
15 |
+
"n_quantization_bits": 8,
|
16 |
+
"output_deviation": 0.005,
|
17 |
+
"max_batch_size": 1,
|
18 |
+
"qtype_weight": "torch.qint8",
|
19 |
+
"qtype_activation": "torch.quint8",
|
20 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
21 |
+
"qscheme": "torch.per_tensor_symmetric",
|
22 |
+
"qconfig": "x86",
|
23 |
+
"group_size": 128,
|
24 |
+
"damp_percent": 0.1,
|
25 |
+
"save_load_fn": "bitsandbytes"
|
26 |
+
}
|
27 |
+
}
|