sharpenb commited on
Commit
5158425
·
verified ·
1 Parent(s): b653845

Upload folder using huggingface_hub (#2)

Browse files

- b4f6e5ceb4abaabba9ebe5f18e319ce2757b9e39ebfaa44ffe2a2f5a872bcbd7 (41c12944dac1b93c7ef2d36089a6a8ac61721b45)
- d915392303faf1f914d69f4272d01de286b82e0b0833c4b4815463c58b7a7961 (072aa31a8ac8323b4903ebd1becee9887e5f9fc7)
- 3644ed0b39442c955ff44069214961104ddd4f0627ae6eed2f6f7042f01f6e79 (c515c364a65996382d4e4cb078674b5c6dbcff4c)

Files changed (4) hide show
  1. README.md +4 -3
  2. config.json +2 -2
  3. plots.png +0 -0
  4. smash_config.json +1 -1
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- library_name: pruna-engine
3
  thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
4
  metrics:
5
  - memory_disk
@@ -8,6 +7,8 @@ metrics:
8
  - inference_throughput
9
  - inference_CO2_emissions
10
  - inference_energy_consumption
 
 
11
  ---
12
  <!-- header start -->
13
  <!-- 200823 -->
@@ -33,7 +34,7 @@ metrics:
33
 
34
  ## Results
35
 
36
- Detailed efficiency metrics coming soon!
37
 
38
  **Frequently Asked Questions**
39
  - ***How does the compression work?*** The model is compressed with llm-int8.
@@ -60,7 +61,7 @@ You can run the smashed model with these steps:
60
  from transformers import AutoModelForCausalLM, AutoTokenizer
61
 
62
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/cognitivecomputations-dolphin-2.1-mistral-7b-bnb-8bit-smashed",
63
- trust_remote_code=True)
64
  tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.1-mistral-7b")
65
 
66
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
 
1
  ---
 
2
  thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
  metrics:
4
  - memory_disk
 
7
  - inference_throughput
8
  - inference_CO2_emissions
9
  - inference_energy_consumption
10
+ tags:
11
+ - pruna-ai
12
  ---
13
  <!-- header start -->
14
  <!-- 200823 -->
 
34
 
35
  ## Results
36
 
37
+ ![image info](./plots.png)
38
 
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
 
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
62
 
63
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/cognitivecomputations-dolphin-2.1-mistral-7b-bnb-8bit-smashed",
64
+ trust_remote_code=True, device_map='auto')
65
  tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.1-mistral-7b")
66
 
67
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/tmp/tmpeehmsl6k",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
@@ -18,7 +18,7 @@
18
  "quantization_config": {
19
  "bnb_4bit_compute_dtype": "bfloat16",
20
  "bnb_4bit_quant_type": "fp4",
21
- "bnb_4bit_use_double_quant": true,
22
  "llm_int8_enable_fp32_cpu_offload": false,
23
  "llm_int8_has_fp16_weight": false,
24
  "llm_int8_skip_modules": [
 
1
  {
2
+ "_name_or_path": "/tmp/tmpx461z1me",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
 
18
  "quantization_config": {
19
  "bnb_4bit_compute_dtype": "bfloat16",
20
  "bnb_4bit_quant_type": "fp4",
21
+ "bnb_4bit_use_double_quant": false,
22
  "llm_int8_enable_fp32_cpu_offload": false,
23
  "llm_int8_has_fp16_weight": false,
24
  "llm_int8_skip_modules": [
plots.png ADDED
smash_config.json CHANGED
@@ -8,7 +8,7 @@
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
- "cache_dir": "/ceph/hdd/staff/charpent/.cache/models8oy2yyb2",
12
  "batch_size": 1,
13
  "model_name": "cognitivecomputations/dolphin-2.1-mistral-7b",
14
  "pruning_ratio": 0.0,
 
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/models060fid80",
12
  "batch_size": 1,
13
  "model_name": "cognitivecomputations/dolphin-2.1-mistral-7b",
14
  "pruning_ratio": 0.0,