Upload folder using huggingface_hub (#1)
Browse files- 7d58aa4314713ec3030577937134d2e86a0991b3f8ad69704844b23b1e72de81 (14a091215211d2544162a85f129624dd8e98e3f3)
- 88deae705e0dc7715b09f2d9d2695b0669cfaaf9ddcbf7188cf3e14560f9d1f9 (09e7b14c47a454e6fb0469270822b6613f64e4aa)
- 7c52c4390a6a1c2719e11f7273dd65917790d14695b8605d2d20dca5b4b227f5 (593855d9d0e432df08898d022867d33df03e0445)
- README.md +85 -0
- config.json +51 -0
- configuration_llama.py +191 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +522 -0
- modeling_llama.py +1573 -0
- smash_config.json +31 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2063 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: FlagAlpha/Llama3-Chinese-8B-Instruct
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
tags:
|
12 |
+
- pruna-ai
|
13 |
+
---
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
18 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
19 |
+
</a>
|
20 |
+
</div>
|
21 |
+
<!-- header end -->
|
22 |
+
|
23 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
24 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
25 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
26 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
|
27 |
+
|
28 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
29 |
+
|
30 |
+
- Give a thumbs up if you like this model!
|
31 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
+
|
36 |
+
## Results
|
37 |
+
|
38 |
+
![image info](./plots.png)
|
39 |
+
|
40 |
+
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
+
- ***What is the model format?*** We use safetensors.
|
45 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
47 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
48 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
49 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
50 |
+
|
51 |
+
## Setup
|
52 |
+
|
53 |
+
You can run the smashed model with these steps:
|
54 |
+
|
55 |
+
0. Check requirements from the original repo FlagAlpha/Llama3-Chinese-8B-Instruct installed. In particular, check python, cuda, and transformers versions.
|
56 |
+
1. Make sure that you have installed quantization related packages.
|
57 |
+
```bash
|
58 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
59 |
+
```
|
60 |
+
2. Load & run the model.
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/FlagAlpha-Llama3-Chinese-8B-Instruct-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("FlagAlpha/Llama3-Chinese-8B-Instruct")
|
67 |
+
|
68 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
+
|
70 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
71 |
+
tokenizer.decode(outputs[0])
|
72 |
+
```
|
73 |
+
|
74 |
+
## Configurations
|
75 |
+
|
76 |
+
The configuration info are in `smash_config.json`.
|
77 |
+
|
78 |
+
## Credits & License
|
79 |
+
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model FlagAlpha/Llama3-Chinese-8B-Instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
+
|
82 |
+
## Want to compress other models?
|
83 |
+
|
84 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelspe2m8o30g_s64rha",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_llama.LlamaConfig",
|
10 |
+
"AutoModel": "FlagAlpha/Llama3-Chinese-8B-Instruct--modeling_llama.LlamaForCausalLM",
|
11 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
|
12 |
+
"AutoModelForSequenceClassification": "FlagAlpha/Llama3-Chinese-8B-Instruct--modeling_llama.LlamaForSequenceClassification"
|
13 |
+
},
|
14 |
+
"bos_token_id": 128000,
|
15 |
+
"eos_token_id": 128001,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 14336,
|
20 |
+
"max_position_embeddings": 8192,
|
21 |
+
"model_type": "llama",
|
22 |
+
"num_attention_heads": 32,
|
23 |
+
"num_hidden_layers": 32,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pretraining_tp": 1,
|
26 |
+
"quantization_config": {
|
27 |
+
"_load_in_4bit": false,
|
28 |
+
"_load_in_8bit": true,
|
29 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
30 |
+
"bnb_4bit_quant_storage": "uint8",
|
31 |
+
"bnb_4bit_quant_type": "fp4",
|
32 |
+
"bnb_4bit_use_double_quant": false,
|
33 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
34 |
+
"llm_int8_has_fp16_weight": false,
|
35 |
+
"llm_int8_skip_modules": [
|
36 |
+
"lm_head"
|
37 |
+
],
|
38 |
+
"llm_int8_threshold": 6.0,
|
39 |
+
"load_in_4bit": false,
|
40 |
+
"load_in_8bit": true,
|
41 |
+
"quant_method": "bitsandbytes"
|
42 |
+
},
|
43 |
+
"rms_norm_eps": 1e-05,
|
44 |
+
"rope_scaling": null,
|
45 |
+
"rope_theta": 500000.0,
|
46 |
+
"tie_word_embeddings": false,
|
47 |
+
"torch_dtype": "float16",
|
48 |
+
"transformers_version": "4.42.4",
|
49 |
+
"use_cache": true,
|
50 |
+
"vocab_size": 128256
|
51 |
+
}
|
configuration_llama.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class LlamaConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
35 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
36 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
44 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
46 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
47 |
+
Dimension of the hidden representations.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
49 |
+
Dimension of the MLP representations.
|
50 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
51 |
+
Number of hidden layers in the Transformer decoder.
|
52 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
53 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
54 |
+
num_key_value_heads (`int`, *optional*):
|
55 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
56 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
57 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
58 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
59 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
60 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
61 |
+
`num_attention_heads`.
|
62 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
63 |
+
The non-linear activation function (function or string) in the decoder.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
65 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
66 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
70 |
+
The epsilon used by the rms normalization layers.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
73 |
+
relevant if `config.is_decoder=True`.
|
74 |
+
pad_token_id (`int`, *optional*):
|
75 |
+
Padding token id.
|
76 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
77 |
+
Beginning of stream token id.
|
78 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
79 |
+
End of stream token id.
|
80 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
81 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
82 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
83 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
84 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
85 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to tie weight embeddings
|
87 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
88 |
+
The base period of the RoPE embeddings.
|
89 |
+
rope_scaling (`Dict`, *optional*):
|
90 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
91 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
92 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
93 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
94 |
+
these scaling strategies behave:
|
95 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
96 |
+
experimental feature, subject to breaking API changes in future versions.
|
97 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
98 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
+
The dropout ratio for the attention probabilities.
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
104 |
+
|
105 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
106 |
+
>>> configuration = LlamaConfig()
|
107 |
+
|
108 |
+
>>> # Initializing a model from the llama-7b style configuration
|
109 |
+
>>> model = LlamaModel(configuration)
|
110 |
+
|
111 |
+
>>> # Accessing the model configuration
|
112 |
+
>>> configuration = model.config
|
113 |
+
```"""
|
114 |
+
|
115 |
+
model_type = "llama"
|
116 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
vocab_size=32000,
|
121 |
+
hidden_size=4096,
|
122 |
+
intermediate_size=11008,
|
123 |
+
num_hidden_layers=32,
|
124 |
+
num_attention_heads=32,
|
125 |
+
num_key_value_heads=None,
|
126 |
+
hidden_act="silu",
|
127 |
+
max_position_embeddings=2048,
|
128 |
+
initializer_range=0.02,
|
129 |
+
rms_norm_eps=1e-6,
|
130 |
+
use_cache=True,
|
131 |
+
pad_token_id=None,
|
132 |
+
bos_token_id=1,
|
133 |
+
eos_token_id=2,
|
134 |
+
pretraining_tp=1,
|
135 |
+
tie_word_embeddings=False,
|
136 |
+
rope_theta=10000.0,
|
137 |
+
rope_scaling=None,
|
138 |
+
attention_bias=False,
|
139 |
+
attention_dropout=0.0,
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
self.vocab_size = vocab_size
|
143 |
+
self.max_position_embeddings = max_position_embeddings
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
# for backward compatibility
|
150 |
+
if num_key_value_heads is None:
|
151 |
+
num_key_value_heads = num_attention_heads
|
152 |
+
|
153 |
+
self.num_key_value_heads = num_key_value_heads
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.initializer_range = initializer_range
|
156 |
+
self.rms_norm_eps = rms_norm_eps
|
157 |
+
self.pretraining_tp = pretraining_tp
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.rope_scaling = rope_scaling
|
161 |
+
self._rope_scaling_validation()
|
162 |
+
self.attention_bias = attention_bias
|
163 |
+
self.attention_dropout = attention_dropout
|
164 |
+
|
165 |
+
super().__init__(
|
166 |
+
pad_token_id=pad_token_id,
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
183 |
+
)
|
184 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
185 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
186 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
187 |
+
raise ValueError(
|
188 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
189 |
+
)
|
190 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
191 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.42.4"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:259617df3f5e98ef1af6045beecdd4291b84ed1317af8ec03240d88923acccd2
|
3 |
+
size 4996758344
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a10d2fe7bdf7ebf64b2b4274a567c1319eecbe06ccc19011d1fecfacc86339d9
|
3 |
+
size 4090003256
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9086705664
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.10.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.10.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.11.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.11.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.11.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.11.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.11.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.11.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.12.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.12.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.12.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.12.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.12.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.12.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.12.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.13.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.13.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.13.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.13.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.13.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.13.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.13.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.14.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.14.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.14.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.14.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.14.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.14.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.14.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.15.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.15.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.15.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.15.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.15.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.15.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.15.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.16.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.16.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.16.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.16.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.16.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.16.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.16.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.17.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.17.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.17.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.17.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.17.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.17.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.17.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.18.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.18.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.18.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.18.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.18.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.18.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.18.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.19.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.19.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.19.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.19.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.19.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.19.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.19.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.2.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.2.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.2.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.2.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.2.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.2.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.2.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.20.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.20.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.20.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.20.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.20.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.20.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.20.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.21.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.21.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.21.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.21.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.21.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.21.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.21.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.22.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.22.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.22.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.22.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.22.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.22.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.22.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.23.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
266 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"model.layers.23.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
268 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
269 |
+
"model.layers.23.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
270 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
271 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.23.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.23.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.23.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.23.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.24.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.24.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.24.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.24.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.24.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.24.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.24.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.25.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.25.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.25.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.25.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.25.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.25.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.25.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.26.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.26.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.26.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.26.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.26.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.26.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.26.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.27.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.27.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.27.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.27.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.27.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.27.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.27.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.28.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.28.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.28.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.28.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.28.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.28.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.28.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.29.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.29.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.29.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.29.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.29.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.29.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.29.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
376 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.3.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.3.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.3.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.3.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.3.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.3.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.3.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
393 |
+
"model.layers.30.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
394 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
395 |
+
"model.layers.30.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
396 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
397 |
+
"model.layers.30.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
398 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
399 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
400 |
+
"model.layers.30.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
401 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
402 |
+
"model.layers.30.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
403 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
404 |
+
"model.layers.30.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
405 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
406 |
+
"model.layers.30.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
407 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
408 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
409 |
+
"model.layers.31.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
|
410 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
411 |
+
"model.layers.31.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
|
412 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
413 |
+
"model.layers.31.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
|
414 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
415 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
416 |
+
"model.layers.31.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
|
417 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
418 |
+
"model.layers.31.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
|
419 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
420 |
+
"model.layers.31.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
|
421 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
422 |
+
"model.layers.31.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
|
423 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
424 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.4.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.4.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.4.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.4.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.4.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.4.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.4.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.5.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.5.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.5.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
446 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
448 |
+
"model.layers.5.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
449 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
450 |
+
"model.layers.5.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
451 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
452 |
+
"model.layers.5.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
453 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
454 |
+
"model.layers.5.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
455 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
456 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
457 |
+
"model.layers.6.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
458 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
459 |
+
"model.layers.6.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
460 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
461 |
+
"model.layers.6.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
462 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
463 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
464 |
+
"model.layers.6.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
465 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
466 |
+
"model.layers.6.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
467 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
468 |
+
"model.layers.6.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
469 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
470 |
+
"model.layers.6.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
471 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
472 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
473 |
+
"model.layers.7.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
474 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
475 |
+
"model.layers.7.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
476 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
477 |
+
"model.layers.7.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
478 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
479 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
480 |
+
"model.layers.7.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
481 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
482 |
+
"model.layers.7.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
483 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
484 |
+
"model.layers.7.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
485 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
486 |
+
"model.layers.7.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
487 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
488 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
489 |
+
"model.layers.8.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
490 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
491 |
+
"model.layers.8.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
492 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
493 |
+
"model.layers.8.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
494 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
495 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
496 |
+
"model.layers.8.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
497 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
498 |
+
"model.layers.8.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
499 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
500 |
+
"model.layers.8.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
501 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
502 |
+
"model.layers.8.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
503 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
504 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
505 |
+
"model.layers.9.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
|
506 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
507 |
+
"model.layers.9.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
|
508 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
509 |
+
"model.layers.9.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
|
510 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
511 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
512 |
+
"model.layers.9.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
|
513 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
514 |
+
"model.layers.9.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
|
515 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
516 |
+
"model.layers.9.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
|
517 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
518 |
+
"model.layers.9.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
|
519 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
520 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
521 |
+
}
|
522 |
+
}
|
modeling_llama.py
ADDED
@@ -0,0 +1,1573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch LLaMA model."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
)
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
43 |
+
from transformers.utils import (
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_llama import LlamaConfig
|
52 |
+
|
53 |
+
|
54 |
+
if is_flash_attn_2_available():
|
55 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
56 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
62 |
+
|
63 |
+
|
64 |
+
def _get_unpad_data(attention_mask):
|
65 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
66 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
67 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
68 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
69 |
+
return (
|
70 |
+
indices,
|
71 |
+
cu_seqlens,
|
72 |
+
max_seqlen_in_batch,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
class LlamaRMSNorm(nn.Module):
|
77 |
+
def __init__(self, hidden_size, eps=1e-6):
|
78 |
+
"""
|
79 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
80 |
+
"""
|
81 |
+
super().__init__()
|
82 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
83 |
+
self.variance_epsilon = eps
|
84 |
+
|
85 |
+
def forward(self, hidden_states):
|
86 |
+
input_dtype = hidden_states.dtype
|
87 |
+
hidden_states = hidden_states.to(torch.float32)
|
88 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
89 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
90 |
+
return self.weight * hidden_states.to(input_dtype)
|
91 |
+
|
92 |
+
|
93 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
94 |
+
|
95 |
+
|
96 |
+
class LlamaRotaryEmbedding(nn.Module):
|
97 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
98 |
+
super().__init__()
|
99 |
+
self.scaling_factor = scaling_factor
|
100 |
+
self.dim = dim
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.base = base
|
103 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
104 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
105 |
+
# For BC we register cos and sin cached
|
106 |
+
self.max_seq_len_cached = max_position_embeddings
|
107 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
108 |
+
t = t / self.scaling_factor
|
109 |
+
freqs = torch.outer(t, self.inv_freq)
|
110 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
111 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
112 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
113 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
114 |
+
|
115 |
+
@property
|
116 |
+
def sin_cached(self):
|
117 |
+
logger.warning_once(
|
118 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
119 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
120 |
+
)
|
121 |
+
return self._sin_cached
|
122 |
+
|
123 |
+
@property
|
124 |
+
def cos_cached(self):
|
125 |
+
logger.warning_once(
|
126 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
127 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
128 |
+
)
|
129 |
+
return self._cos_cached
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def forward(self, x, position_ids):
|
133 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
134 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
135 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
136 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
137 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
138 |
+
device_type = x.device.type
|
139 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
140 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
141 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
+
cos = emb.cos()
|
144 |
+
sin = emb.sin()
|
145 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
146 |
+
|
147 |
+
|
148 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
149 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
150 |
+
|
151 |
+
def forward(self, x, position_ids):
|
152 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
153 |
+
position_ids = position_ids.float() / self.scaling_factor
|
154 |
+
cos, sin = super().forward(x, position_ids)
|
155 |
+
return cos, sin
|
156 |
+
|
157 |
+
|
158 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
159 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
160 |
+
|
161 |
+
def forward(self, x, position_ids):
|
162 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
163 |
+
seq_len = torch.max(position_ids) + 1
|
164 |
+
if seq_len > self.max_position_embeddings:
|
165 |
+
base = self.base * (
|
166 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
167 |
+
) ** (self.dim / (self.dim - 2))
|
168 |
+
inv_freq = 1.0 / (
|
169 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
170 |
+
)
|
171 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
172 |
+
|
173 |
+
cos, sin = super().forward(x, position_ids)
|
174 |
+
return cos, sin
|
175 |
+
|
176 |
+
|
177 |
+
def rotate_half(x):
|
178 |
+
"""Rotates half the hidden dims of the input."""
|
179 |
+
x1 = x[..., : x.shape[-1] // 2]
|
180 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
181 |
+
return torch.cat((-x2, x1), dim=-1)
|
182 |
+
|
183 |
+
|
184 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
185 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
q (`torch.Tensor`): The query tensor.
|
189 |
+
k (`torch.Tensor`): The key tensor.
|
190 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
191 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
192 |
+
position_ids (`torch.Tensor`, *optional*):
|
193 |
+
Deprecated and unused.
|
194 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
195 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
196 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
197 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
198 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
199 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
200 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
201 |
+
Returns:
|
202 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
203 |
+
"""
|
204 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
205 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
206 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
207 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
208 |
+
return q_embed, k_embed
|
209 |
+
|
210 |
+
|
211 |
+
class LlamaMLP(nn.Module):
|
212 |
+
def __init__(self, config):
|
213 |
+
super().__init__()
|
214 |
+
self.config = config
|
215 |
+
self.hidden_size = config.hidden_size
|
216 |
+
self.intermediate_size = config.intermediate_size
|
217 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
218 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
219 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
220 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
221 |
+
|
222 |
+
def forward(self, x):
|
223 |
+
if self.config.pretraining_tp > 1:
|
224 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
225 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
226 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
227 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
228 |
+
|
229 |
+
gate_proj = torch.cat(
|
230 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
231 |
+
)
|
232 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
233 |
+
|
234 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
235 |
+
down_proj = [
|
236 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
237 |
+
]
|
238 |
+
down_proj = sum(down_proj)
|
239 |
+
else:
|
240 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
241 |
+
|
242 |
+
return down_proj
|
243 |
+
|
244 |
+
|
245 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
246 |
+
"""
|
247 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
248 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
249 |
+
"""
|
250 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
251 |
+
if n_rep == 1:
|
252 |
+
return hidden_states
|
253 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
254 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
255 |
+
|
256 |
+
|
257 |
+
class LlamaAttention(nn.Module):
|
258 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
259 |
+
|
260 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
261 |
+
super().__init__()
|
262 |
+
self.config = config
|
263 |
+
self.layer_idx = layer_idx
|
264 |
+
if layer_idx is None:
|
265 |
+
logger.warning_once(
|
266 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
267 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
268 |
+
"when creating this class."
|
269 |
+
)
|
270 |
+
|
271 |
+
self.attention_dropout = config.attention_dropout
|
272 |
+
self.hidden_size = config.hidden_size
|
273 |
+
self.num_heads = config.num_attention_heads
|
274 |
+
self.head_dim = self.hidden_size // self.num_heads
|
275 |
+
self.num_key_value_heads = config.num_key_value_heads
|
276 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
277 |
+
self.max_position_embeddings = config.max_position_embeddings
|
278 |
+
self.rope_theta = config.rope_theta
|
279 |
+
self.is_causal = True
|
280 |
+
|
281 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
282 |
+
raise ValueError(
|
283 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
284 |
+
f" and `num_heads`: {self.num_heads})."
|
285 |
+
)
|
286 |
+
|
287 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
288 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
289 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
290 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
291 |
+
self._init_rope()
|
292 |
+
|
293 |
+
def _init_rope(self):
|
294 |
+
if self.config.rope_scaling is None:
|
295 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
296 |
+
self.head_dim,
|
297 |
+
max_position_embeddings=self.max_position_embeddings,
|
298 |
+
base=self.rope_theta,
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
scaling_type = self.config.rope_scaling["type"]
|
302 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
303 |
+
if scaling_type == "linear":
|
304 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
305 |
+
self.head_dim,
|
306 |
+
max_position_embeddings=self.max_position_embeddings,
|
307 |
+
scaling_factor=scaling_factor,
|
308 |
+
base=self.rope_theta,
|
309 |
+
)
|
310 |
+
elif scaling_type == "dynamic":
|
311 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
312 |
+
self.head_dim,
|
313 |
+
max_position_embeddings=self.max_position_embeddings,
|
314 |
+
scaling_factor=scaling_factor,
|
315 |
+
base=self.rope_theta,
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
hidden_states: torch.Tensor,
|
323 |
+
attention_mask: Optional[torch.Tensor] = None,
|
324 |
+
position_ids: Optional[torch.LongTensor] = None,
|
325 |
+
past_key_value: Optional[Cache] = None,
|
326 |
+
output_attentions: bool = False,
|
327 |
+
use_cache: bool = False,
|
328 |
+
cache_position: Optional[torch.LongTensor] = None,
|
329 |
+
**kwargs,
|
330 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
331 |
+
bsz, q_len, _ = hidden_states.size()
|
332 |
+
|
333 |
+
if self.config.pretraining_tp > 1:
|
334 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
335 |
+
query_slices = self.q_proj.weight.split(
|
336 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
337 |
+
)
|
338 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
339 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
340 |
+
|
341 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
342 |
+
query_states = torch.cat(query_states, dim=-1)
|
343 |
+
|
344 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
345 |
+
key_states = torch.cat(key_states, dim=-1)
|
346 |
+
|
347 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
348 |
+
value_states = torch.cat(value_states, dim=-1)
|
349 |
+
|
350 |
+
else:
|
351 |
+
query_states = self.q_proj(hidden_states)
|
352 |
+
key_states = self.k_proj(hidden_states)
|
353 |
+
value_states = self.v_proj(hidden_states)
|
354 |
+
|
355 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
356 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
357 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
358 |
+
|
359 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
360 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
361 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
362 |
+
|
363 |
+
if past_key_value is not None:
|
364 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
365 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
366 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
367 |
+
|
368 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
369 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
370 |
+
|
371 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
372 |
+
|
373 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
374 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
375 |
+
attn_weights = attn_weights + causal_mask
|
376 |
+
|
377 |
+
# upcast attention to fp32
|
378 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
379 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
380 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
381 |
+
|
382 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
383 |
+
raise ValueError(
|
384 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
385 |
+
f" {attn_output.size()}"
|
386 |
+
)
|
387 |
+
|
388 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
389 |
+
|
390 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
391 |
+
|
392 |
+
if self.config.pretraining_tp > 1:
|
393 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
394 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
395 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
396 |
+
else:
|
397 |
+
attn_output = self.o_proj(attn_output)
|
398 |
+
|
399 |
+
if not output_attentions:
|
400 |
+
attn_weights = None
|
401 |
+
|
402 |
+
return attn_output, attn_weights, past_key_value
|
403 |
+
|
404 |
+
|
405 |
+
class LlamaFlashAttention2(LlamaAttention):
|
406 |
+
"""
|
407 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
408 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
409 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
410 |
+
"""
|
411 |
+
|
412 |
+
def __init__(self, *args, **kwargs):
|
413 |
+
super().__init__(*args, **kwargs)
|
414 |
+
|
415 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
416 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
417 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
418 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
419 |
+
|
420 |
+
def forward(
|
421 |
+
self,
|
422 |
+
hidden_states: torch.Tensor,
|
423 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
424 |
+
position_ids: Optional[torch.LongTensor] = None,
|
425 |
+
past_key_value: Optional[Cache] = None,
|
426 |
+
output_attentions: bool = False,
|
427 |
+
use_cache: bool = False,
|
428 |
+
cache_position: Optional[torch.LongTensor] = None,
|
429 |
+
**kwargs,
|
430 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
431 |
+
output_attentions = False
|
432 |
+
|
433 |
+
bsz, q_len, _ = hidden_states.size()
|
434 |
+
|
435 |
+
query_states = self.q_proj(hidden_states)
|
436 |
+
key_states = self.k_proj(hidden_states)
|
437 |
+
value_states = self.v_proj(hidden_states)
|
438 |
+
|
439 |
+
# Flash attention requires the input to have the shape
|
440 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
441 |
+
# therefore we just need to keep the original shape
|
442 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
443 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
444 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
445 |
+
|
446 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
447 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
448 |
+
|
449 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
450 |
+
|
451 |
+
if past_key_value is not None:
|
452 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
453 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
454 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
455 |
+
|
456 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
457 |
+
# to be able to avoid many of these transpose/reshape/view.
|
458 |
+
query_states = query_states.transpose(1, 2)
|
459 |
+
key_states = key_states.transpose(1, 2)
|
460 |
+
value_states = value_states.transpose(1, 2)
|
461 |
+
|
462 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
463 |
+
|
464 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
465 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
466 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
467 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
468 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
469 |
+
|
470 |
+
input_dtype = query_states.dtype
|
471 |
+
if input_dtype == torch.float32:
|
472 |
+
if torch.is_autocast_enabled():
|
473 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
474 |
+
# Handle the case where the model is quantized
|
475 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
476 |
+
target_dtype = self.config._pre_quantization_dtype
|
477 |
+
else:
|
478 |
+
target_dtype = self.q_proj.weight.dtype
|
479 |
+
|
480 |
+
logger.warning_once(
|
481 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
482 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
483 |
+
f" {target_dtype}."
|
484 |
+
)
|
485 |
+
|
486 |
+
query_states = query_states.to(target_dtype)
|
487 |
+
key_states = key_states.to(target_dtype)
|
488 |
+
value_states = value_states.to(target_dtype)
|
489 |
+
|
490 |
+
attn_output = self._flash_attention_forward(
|
491 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
492 |
+
)
|
493 |
+
|
494 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
495 |
+
attn_output = self.o_proj(attn_output)
|
496 |
+
|
497 |
+
if not output_attentions:
|
498 |
+
attn_weights = None
|
499 |
+
|
500 |
+
return attn_output, attn_weights, past_key_value
|
501 |
+
|
502 |
+
def _flash_attention_forward(
|
503 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
504 |
+
):
|
505 |
+
"""
|
506 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
507 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
query_states (`torch.Tensor`):
|
511 |
+
Input query states to be passed to Flash Attention API
|
512 |
+
key_states (`torch.Tensor`):
|
513 |
+
Input key states to be passed to Flash Attention API
|
514 |
+
value_states (`torch.Tensor`):
|
515 |
+
Input value states to be passed to Flash Attention API
|
516 |
+
attention_mask (`torch.Tensor`):
|
517 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
518 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
519 |
+
dropout (`float`):
|
520 |
+
Attention dropout
|
521 |
+
softmax_scale (`float`, *optional*):
|
522 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
523 |
+
"""
|
524 |
+
if not self._flash_attn_uses_top_left_mask:
|
525 |
+
causal = self.is_causal
|
526 |
+
else:
|
527 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
528 |
+
causal = self.is_causal and query_length != 1
|
529 |
+
|
530 |
+
# Contains at least one padding token in the sequence
|
531 |
+
if attention_mask is not None:
|
532 |
+
batch_size = query_states.shape[0]
|
533 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
534 |
+
query_states, key_states, value_states, attention_mask, query_length
|
535 |
+
)
|
536 |
+
|
537 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
538 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
539 |
+
|
540 |
+
attn_output_unpad = flash_attn_varlen_func(
|
541 |
+
query_states,
|
542 |
+
key_states,
|
543 |
+
value_states,
|
544 |
+
cu_seqlens_q=cu_seqlens_q,
|
545 |
+
cu_seqlens_k=cu_seqlens_k,
|
546 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
547 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
548 |
+
dropout_p=dropout,
|
549 |
+
softmax_scale=softmax_scale,
|
550 |
+
causal=causal,
|
551 |
+
)
|
552 |
+
|
553 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
554 |
+
else:
|
555 |
+
attn_output = flash_attn_func(
|
556 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
557 |
+
)
|
558 |
+
|
559 |
+
return attn_output
|
560 |
+
|
561 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
562 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
563 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
564 |
+
|
565 |
+
key_layer = index_first_axis(
|
566 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
567 |
+
)
|
568 |
+
value_layer = index_first_axis(
|
569 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
570 |
+
)
|
571 |
+
if query_length == kv_seq_len:
|
572 |
+
query_layer = index_first_axis(
|
573 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
574 |
+
)
|
575 |
+
cu_seqlens_q = cu_seqlens_k
|
576 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
577 |
+
indices_q = indices_k
|
578 |
+
elif query_length == 1:
|
579 |
+
max_seqlen_in_batch_q = 1
|
580 |
+
cu_seqlens_q = torch.arange(
|
581 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
582 |
+
) # There is a memcpy here, that is very bad.
|
583 |
+
indices_q = cu_seqlens_q[:-1]
|
584 |
+
query_layer = query_layer.squeeze(1)
|
585 |
+
else:
|
586 |
+
# The -q_len: slice assumes left padding.
|
587 |
+
attention_mask = attention_mask[:, -query_length:]
|
588 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
589 |
+
|
590 |
+
return (
|
591 |
+
query_layer,
|
592 |
+
key_layer,
|
593 |
+
value_layer,
|
594 |
+
indices_q,
|
595 |
+
(cu_seqlens_q, cu_seqlens_k),
|
596 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
597 |
+
)
|
598 |
+
|
599 |
+
|
600 |
+
class LlamaSdpaAttention(LlamaAttention):
|
601 |
+
"""
|
602 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
603 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
604 |
+
SDPA API.
|
605 |
+
"""
|
606 |
+
|
607 |
+
# Adapted from LlamaAttention.forward
|
608 |
+
def forward(
|
609 |
+
self,
|
610 |
+
hidden_states: torch.Tensor,
|
611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
612 |
+
position_ids: Optional[torch.LongTensor] = None,
|
613 |
+
past_key_value: Optional[Cache] = None,
|
614 |
+
output_attentions: bool = False,
|
615 |
+
use_cache: bool = False,
|
616 |
+
cache_position: Optional[torch.LongTensor] = None,
|
617 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
618 |
+
if output_attentions:
|
619 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
620 |
+
logger.warning_once(
|
621 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
622 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
623 |
+
)
|
624 |
+
return super().forward(
|
625 |
+
hidden_states=hidden_states,
|
626 |
+
attention_mask=attention_mask,
|
627 |
+
position_ids=position_ids,
|
628 |
+
past_key_value=past_key_value,
|
629 |
+
output_attentions=output_attentions,
|
630 |
+
use_cache=use_cache,
|
631 |
+
cache_position=cache_position,
|
632 |
+
)
|
633 |
+
|
634 |
+
bsz, q_len, _ = hidden_states.size()
|
635 |
+
|
636 |
+
query_states = self.q_proj(hidden_states)
|
637 |
+
key_states = self.k_proj(hidden_states)
|
638 |
+
value_states = self.v_proj(hidden_states)
|
639 |
+
|
640 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
641 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
642 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
643 |
+
|
644 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
645 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
646 |
+
|
647 |
+
# In case static cache is used, it is an instance attribute.
|
648 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
649 |
+
|
650 |
+
if past_key_value is not None:
|
651 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
652 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
653 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
654 |
+
|
655 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
656 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
657 |
+
|
658 |
+
causal_mask = attention_mask
|
659 |
+
if attention_mask is not None:
|
660 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
661 |
+
|
662 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
663 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
664 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
665 |
+
query_states = query_states.contiguous()
|
666 |
+
key_states = key_states.contiguous()
|
667 |
+
value_states = value_states.contiguous()
|
668 |
+
|
669 |
+
# In case we are not compiling, we may set `causal_mask` to None, which is required to dispatch to SDPA's Flash Attention 2 backend, rather
|
670 |
+
# relying on the `is_causal` argument.
|
671 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
672 |
+
query_states,
|
673 |
+
key_states,
|
674 |
+
value_states,
|
675 |
+
attn_mask=causal_mask,
|
676 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
677 |
+
is_causal=causal_mask is None and q_len > 1,
|
678 |
+
)
|
679 |
+
|
680 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
681 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
682 |
+
|
683 |
+
attn_output = self.o_proj(attn_output)
|
684 |
+
|
685 |
+
return attn_output, None, past_key_value
|
686 |
+
|
687 |
+
|
688 |
+
LLAMA_ATTENTION_CLASSES = {
|
689 |
+
"eager": LlamaAttention,
|
690 |
+
"flash_attention_2": LlamaFlashAttention2,
|
691 |
+
"sdpa": LlamaSdpaAttention,
|
692 |
+
}
|
693 |
+
|
694 |
+
|
695 |
+
class LlamaDecoderLayer(nn.Module):
|
696 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
697 |
+
super().__init__()
|
698 |
+
self.hidden_size = config.hidden_size
|
699 |
+
|
700 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
701 |
+
|
702 |
+
self.mlp = LlamaMLP(config)
|
703 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
704 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
705 |
+
|
706 |
+
def forward(
|
707 |
+
self,
|
708 |
+
hidden_states: torch.Tensor,
|
709 |
+
attention_mask: Optional[torch.Tensor] = None,
|
710 |
+
position_ids: Optional[torch.LongTensor] = None,
|
711 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
712 |
+
output_attentions: Optional[bool] = False,
|
713 |
+
use_cache: Optional[bool] = False,
|
714 |
+
cache_position: Optional[torch.LongTensor] = None,
|
715 |
+
**kwargs,
|
716 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
717 |
+
"""
|
718 |
+
Args:
|
719 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
720 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
721 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
722 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
723 |
+
output_attentions (`bool`, *optional*):
|
724 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
725 |
+
returned tensors for more detail.
|
726 |
+
use_cache (`bool`, *optional*):
|
727 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
728 |
+
(see `past_key_values`).
|
729 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
730 |
+
"""
|
731 |
+
if "padding_mask" in kwargs:
|
732 |
+
warnings.warn(
|
733 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
734 |
+
)
|
735 |
+
|
736 |
+
residual = hidden_states
|
737 |
+
|
738 |
+
hidden_states = self.input_layernorm(hidden_states)
|
739 |
+
|
740 |
+
# Self Attention
|
741 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
742 |
+
hidden_states=hidden_states,
|
743 |
+
attention_mask=attention_mask,
|
744 |
+
position_ids=position_ids,
|
745 |
+
past_key_value=past_key_value,
|
746 |
+
output_attentions=output_attentions,
|
747 |
+
use_cache=use_cache,
|
748 |
+
cache_position=cache_position,
|
749 |
+
**kwargs,
|
750 |
+
)
|
751 |
+
hidden_states = residual + hidden_states
|
752 |
+
|
753 |
+
# Fully Connected
|
754 |
+
residual = hidden_states
|
755 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
756 |
+
hidden_states = self.mlp(hidden_states)
|
757 |
+
hidden_states = residual + hidden_states
|
758 |
+
|
759 |
+
outputs = (hidden_states,)
|
760 |
+
|
761 |
+
if output_attentions:
|
762 |
+
outputs += (self_attn_weights,)
|
763 |
+
|
764 |
+
if use_cache:
|
765 |
+
outputs += (present_key_value,)
|
766 |
+
|
767 |
+
return outputs
|
768 |
+
|
769 |
+
|
770 |
+
LLAMA_START_DOCSTRING = r"""
|
771 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
772 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
773 |
+
etc.)
|
774 |
+
|
775 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
776 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
777 |
+
and behavior.
|
778 |
+
|
779 |
+
Parameters:
|
780 |
+
config ([`LlamaConfig`]):
|
781 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
782 |
+
load the weights associated with the model, only the configuration. Check out the
|
783 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
784 |
+
"""
|
785 |
+
|
786 |
+
|
787 |
+
@add_start_docstrings(
|
788 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
789 |
+
LLAMA_START_DOCSTRING,
|
790 |
+
)
|
791 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
792 |
+
config_class = LlamaConfig
|
793 |
+
base_model_prefix = "model"
|
794 |
+
supports_gradient_checkpointing = True
|
795 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
796 |
+
_skip_keys_device_placement = ["past_key_values"]
|
797 |
+
_supports_flash_attn_2 = True
|
798 |
+
_supports_sdpa = True
|
799 |
+
_supports_cache_class = True
|
800 |
+
|
801 |
+
def _init_weights(self, module):
|
802 |
+
std = self.config.initializer_range
|
803 |
+
if isinstance(module, nn.Linear):
|
804 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
805 |
+
if module.bias is not None:
|
806 |
+
module.bias.data.zero_()
|
807 |
+
elif isinstance(module, nn.Embedding):
|
808 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
809 |
+
if module.padding_idx is not None:
|
810 |
+
module.weight.data[module.padding_idx].zero_()
|
811 |
+
|
812 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
813 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
814 |
+
raise ValueError(
|
815 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
816 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
817 |
+
)
|
818 |
+
|
819 |
+
for layer in self.model.layers:
|
820 |
+
device = layer.input_layernorm.weight.device
|
821 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
822 |
+
dtype = self.config._pre_quantization_dtype
|
823 |
+
else:
|
824 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
825 |
+
layer.self_attn.past_key_value = cache_cls(
|
826 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
827 |
+
)
|
828 |
+
|
829 |
+
def _reset_cache(self):
|
830 |
+
for layer in self.model.layers:
|
831 |
+
layer.self_attn.past_key_value = None
|
832 |
+
|
833 |
+
|
834 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
835 |
+
Args:
|
836 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
837 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
838 |
+
it.
|
839 |
+
|
840 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
841 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
842 |
+
|
843 |
+
[What are input IDs?](../glossary#input-ids)
|
844 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
846 |
+
|
847 |
+
- 1 for tokens that are **not masked**,
|
848 |
+
- 0 for tokens that are **masked**.
|
849 |
+
|
850 |
+
[What are attention masks?](../glossary#attention-mask)
|
851 |
+
|
852 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
853 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
854 |
+
|
855 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
856 |
+
`past_key_values`).
|
857 |
+
|
858 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
859 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
860 |
+
information on the default strategy.
|
861 |
+
|
862 |
+
- 1 indicates the head is **not masked**,
|
863 |
+
- 0 indicates the head is **masked**.
|
864 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
865 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
866 |
+
config.n_positions - 1]`.
|
867 |
+
|
868 |
+
[What are position IDs?](../glossary#position-ids)
|
869 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
870 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
871 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
872 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
873 |
+
|
874 |
+
Two formats are allowed:
|
875 |
+
- a [`~cache_utils.Cache`] instance;
|
876 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
877 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
878 |
+
cache format.
|
879 |
+
|
880 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
881 |
+
legacy cache format will be returned.
|
882 |
+
|
883 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
884 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
885 |
+
of shape `(batch_size, sequence_length)`.
|
886 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
887 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
888 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
889 |
+
model's internal embedding lookup matrix.
|
890 |
+
use_cache (`bool`, *optional*):
|
891 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
892 |
+
`past_key_values`).
|
893 |
+
output_attentions (`bool`, *optional*):
|
894 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
895 |
+
tensors for more detail.
|
896 |
+
output_hidden_states (`bool`, *optional*):
|
897 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
898 |
+
more detail.
|
899 |
+
return_dict (`bool`, *optional*):
|
900 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
901 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
902 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
903 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
904 |
+
the complete sequence length.
|
905 |
+
"""
|
906 |
+
|
907 |
+
|
908 |
+
@add_start_docstrings(
|
909 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
910 |
+
LLAMA_START_DOCSTRING,
|
911 |
+
)
|
912 |
+
class LlamaModel(LlamaPreTrainedModel):
|
913 |
+
"""
|
914 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
915 |
+
|
916 |
+
Args:
|
917 |
+
config: LlamaConfig
|
918 |
+
"""
|
919 |
+
|
920 |
+
def __init__(self, config: LlamaConfig):
|
921 |
+
super().__init__(config)
|
922 |
+
self.padding_idx = config.pad_token_id
|
923 |
+
self.vocab_size = config.vocab_size
|
924 |
+
|
925 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
926 |
+
self.layers = nn.ModuleList(
|
927 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
928 |
+
)
|
929 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
930 |
+
self.gradient_checkpointing = False
|
931 |
+
|
932 |
+
# Initialize weights and apply final processing
|
933 |
+
self.post_init()
|
934 |
+
|
935 |
+
def get_input_embeddings(self):
|
936 |
+
return self.embed_tokens
|
937 |
+
|
938 |
+
def set_input_embeddings(self, value):
|
939 |
+
self.embed_tokens = value
|
940 |
+
|
941 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
942 |
+
def forward(
|
943 |
+
self,
|
944 |
+
input_ids: torch.LongTensor = None,
|
945 |
+
attention_mask: Optional[torch.Tensor] = None,
|
946 |
+
position_ids: Optional[torch.LongTensor] = None,
|
947 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
948 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
949 |
+
use_cache: Optional[bool] = None,
|
950 |
+
output_attentions: Optional[bool] = None,
|
951 |
+
output_hidden_states: Optional[bool] = None,
|
952 |
+
return_dict: Optional[bool] = None,
|
953 |
+
cache_position: Optional[torch.LongTensor] = None,
|
954 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
955 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
956 |
+
output_hidden_states = (
|
957 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
958 |
+
)
|
959 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
960 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
961 |
+
|
962 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
963 |
+
raise ValueError(
|
964 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
965 |
+
)
|
966 |
+
|
967 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
968 |
+
logger.warning_once(
|
969 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
970 |
+
)
|
971 |
+
use_cache = False
|
972 |
+
|
973 |
+
if inputs_embeds is None:
|
974 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
975 |
+
|
976 |
+
past_seen_tokens = 0
|
977 |
+
if use_cache: # kept for BC (cache positions)
|
978 |
+
if not isinstance(past_key_values, StaticCache):
|
979 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
980 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
981 |
+
|
982 |
+
if cache_position is None:
|
983 |
+
if isinstance(past_key_values, StaticCache):
|
984 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
985 |
+
cache_position = torch.arange(
|
986 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
987 |
+
)
|
988 |
+
|
989 |
+
if position_ids is None:
|
990 |
+
position_ids = cache_position.unsqueeze(0)
|
991 |
+
|
992 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens)
|
993 |
+
|
994 |
+
# embed positions
|
995 |
+
hidden_states = inputs_embeds
|
996 |
+
|
997 |
+
# decoder layers
|
998 |
+
all_hidden_states = () if output_hidden_states else None
|
999 |
+
all_self_attns = () if output_attentions else None
|
1000 |
+
next_decoder_cache = None
|
1001 |
+
|
1002 |
+
for decoder_layer in self.layers:
|
1003 |
+
if output_hidden_states:
|
1004 |
+
all_hidden_states += (hidden_states,)
|
1005 |
+
|
1006 |
+
if self.gradient_checkpointing and self.training:
|
1007 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1008 |
+
decoder_layer.__call__,
|
1009 |
+
hidden_states,
|
1010 |
+
causal_mask,
|
1011 |
+
position_ids,
|
1012 |
+
past_key_values,
|
1013 |
+
output_attentions,
|
1014 |
+
use_cache,
|
1015 |
+
cache_position,
|
1016 |
+
)
|
1017 |
+
else:
|
1018 |
+
layer_outputs = decoder_layer(
|
1019 |
+
hidden_states,
|
1020 |
+
attention_mask=causal_mask,
|
1021 |
+
position_ids=position_ids,
|
1022 |
+
past_key_value=past_key_values,
|
1023 |
+
output_attentions=output_attentions,
|
1024 |
+
use_cache=use_cache,
|
1025 |
+
cache_position=cache_position,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
hidden_states = layer_outputs[0]
|
1029 |
+
|
1030 |
+
if use_cache:
|
1031 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1032 |
+
|
1033 |
+
if output_attentions:
|
1034 |
+
all_self_attns += (layer_outputs[1],)
|
1035 |
+
|
1036 |
+
hidden_states = self.norm(hidden_states)
|
1037 |
+
|
1038 |
+
# add hidden states from the last decoder layer
|
1039 |
+
if output_hidden_states:
|
1040 |
+
all_hidden_states += (hidden_states,)
|
1041 |
+
|
1042 |
+
next_cache = None
|
1043 |
+
if use_cache:
|
1044 |
+
next_cache = (
|
1045 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1046 |
+
)
|
1047 |
+
if not return_dict:
|
1048 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1049 |
+
return BaseModelOutputWithPast(
|
1050 |
+
last_hidden_state=hidden_states,
|
1051 |
+
past_key_values=next_cache,
|
1052 |
+
hidden_states=all_hidden_states,
|
1053 |
+
attentions=all_self_attns,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
def _update_causal_mask(
|
1057 |
+
self,
|
1058 |
+
attention_mask: torch.Tensor,
|
1059 |
+
input_tensor: torch.Tensor,
|
1060 |
+
cache_position: torch.Tensor,
|
1061 |
+
past_seen_tokens: int,
|
1062 |
+
):
|
1063 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1064 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1065 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1066 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1067 |
+
|
1068 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1069 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1070 |
+
return attention_mask
|
1071 |
+
return None
|
1072 |
+
|
1073 |
+
if self.config._attn_implementation == "sdpa":
|
1074 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument,
|
1075 |
+
# in order to dispatch on Flash Attention 2.
|
1076 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1077 |
+
attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens
|
1078 |
+
):
|
1079 |
+
return None
|
1080 |
+
|
1081 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1082 |
+
min_dtype = torch.finfo(dtype).min
|
1083 |
+
sequence_length = input_tensor.shape[1]
|
1084 |
+
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
|
1085 |
+
target_length = self.config.max_position_embeddings
|
1086 |
+
else: # dynamic cache
|
1087 |
+
target_length = (
|
1088 |
+
attention_mask.shape[-1]
|
1089 |
+
if isinstance(attention_mask, torch.Tensor)
|
1090 |
+
else past_seen_tokens + sequence_length + 1
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1094 |
+
if sequence_length != 1:
|
1095 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1096 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1097 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1098 |
+
if attention_mask is not None:
|
1099 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1100 |
+
if attention_mask.dim() == 2:
|
1101 |
+
mask_length = attention_mask.shape[-1]
|
1102 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1103 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1104 |
+
elif attention_mask.dim() == 4:
|
1105 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1106 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1107 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1108 |
+
offset = cache_position[0]
|
1109 |
+
else:
|
1110 |
+
offset = 0
|
1111 |
+
mask_shape = attention_mask.shape
|
1112 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1113 |
+
causal_mask[
|
1114 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1115 |
+
] = mask_slice
|
1116 |
+
|
1117 |
+
if (
|
1118 |
+
self.config._attn_implementation == "sdpa"
|
1119 |
+
and attention_mask is not None
|
1120 |
+
and attention_mask.device.type == "cuda"
|
1121 |
+
):
|
1122 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1123 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1124 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1125 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1126 |
+
|
1127 |
+
return causal_mask
|
1128 |
+
|
1129 |
+
|
1130 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1131 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1132 |
+
|
1133 |
+
def __init__(self, config):
|
1134 |
+
super().__init__(config)
|
1135 |
+
self.model = LlamaModel(config)
|
1136 |
+
self.vocab_size = config.vocab_size
|
1137 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1138 |
+
|
1139 |
+
# Initialize weights and apply final processing
|
1140 |
+
self.post_init()
|
1141 |
+
|
1142 |
+
def get_input_embeddings(self):
|
1143 |
+
return self.model.embed_tokens
|
1144 |
+
|
1145 |
+
def set_input_embeddings(self, value):
|
1146 |
+
self.model.embed_tokens = value
|
1147 |
+
|
1148 |
+
def get_output_embeddings(self):
|
1149 |
+
return self.lm_head
|
1150 |
+
|
1151 |
+
def set_output_embeddings(self, new_embeddings):
|
1152 |
+
self.lm_head = new_embeddings
|
1153 |
+
|
1154 |
+
def set_decoder(self, decoder):
|
1155 |
+
self.model = decoder
|
1156 |
+
|
1157 |
+
def get_decoder(self):
|
1158 |
+
return self.model
|
1159 |
+
|
1160 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1161 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1162 |
+
def forward(
|
1163 |
+
self,
|
1164 |
+
input_ids: torch.LongTensor = None,
|
1165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1167 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1168 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1169 |
+
labels: Optional[torch.LongTensor] = None,
|
1170 |
+
use_cache: Optional[bool] = None,
|
1171 |
+
output_attentions: Optional[bool] = None,
|
1172 |
+
output_hidden_states: Optional[bool] = None,
|
1173 |
+
return_dict: Optional[bool] = None,
|
1174 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1175 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1176 |
+
r"""
|
1177 |
+
Args:
|
1178 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1179 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1180 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1181 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1182 |
+
|
1183 |
+
Returns:
|
1184 |
+
|
1185 |
+
Example:
|
1186 |
+
|
1187 |
+
```python
|
1188 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1189 |
+
|
1190 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1191 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1192 |
+
|
1193 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1194 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1195 |
+
|
1196 |
+
>>> # Generate
|
1197 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1198 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1199 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1200 |
+
```"""
|
1201 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1202 |
+
output_hidden_states = (
|
1203 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1204 |
+
)
|
1205 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1206 |
+
|
1207 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1208 |
+
outputs = self.model(
|
1209 |
+
input_ids=input_ids,
|
1210 |
+
attention_mask=attention_mask,
|
1211 |
+
position_ids=position_ids,
|
1212 |
+
past_key_values=past_key_values,
|
1213 |
+
inputs_embeds=inputs_embeds,
|
1214 |
+
use_cache=use_cache,
|
1215 |
+
output_attentions=output_attentions,
|
1216 |
+
output_hidden_states=output_hidden_states,
|
1217 |
+
return_dict=return_dict,
|
1218 |
+
cache_position=cache_position,
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
hidden_states = outputs[0]
|
1222 |
+
if self.config.pretraining_tp > 1:
|
1223 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1224 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1225 |
+
logits = torch.cat(logits, dim=-1)
|
1226 |
+
else:
|
1227 |
+
logits = self.lm_head(hidden_states)
|
1228 |
+
logits = logits.float()
|
1229 |
+
|
1230 |
+
loss = None
|
1231 |
+
if labels is not None:
|
1232 |
+
# Shift so that tokens < n predict n
|
1233 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1234 |
+
shift_labels = labels[..., 1:].contiguous()
|
1235 |
+
# Flatten the tokens
|
1236 |
+
loss_fct = CrossEntropyLoss()
|
1237 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1238 |
+
shift_labels = shift_labels.view(-1)
|
1239 |
+
# Enable model parallelism
|
1240 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1241 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1242 |
+
|
1243 |
+
if not return_dict:
|
1244 |
+
output = (logits,) + outputs[1:]
|
1245 |
+
return (loss,) + output if loss is not None else output
|
1246 |
+
|
1247 |
+
return CausalLMOutputWithPast(
|
1248 |
+
loss=loss,
|
1249 |
+
logits=logits,
|
1250 |
+
past_key_values=outputs.past_key_values,
|
1251 |
+
hidden_states=outputs.hidden_states,
|
1252 |
+
attentions=outputs.attentions,
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
def prepare_inputs_for_generation(
|
1256 |
+
self,
|
1257 |
+
input_ids,
|
1258 |
+
past_key_values=None,
|
1259 |
+
attention_mask=None,
|
1260 |
+
inputs_embeds=None,
|
1261 |
+
cache_position=None,
|
1262 |
+
use_cache=True,
|
1263 |
+
**kwargs,
|
1264 |
+
):
|
1265 |
+
# With static cache, the `past_key_values` is None
|
1266 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1267 |
+
has_static_cache = False
|
1268 |
+
if past_key_values is None:
|
1269 |
+
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1270 |
+
has_static_cache = past_key_values is not None
|
1271 |
+
|
1272 |
+
past_length = 0
|
1273 |
+
if past_key_values is not None:
|
1274 |
+
if isinstance(past_key_values, Cache):
|
1275 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1276 |
+
max_cache_length = (
|
1277 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1278 |
+
if past_key_values.get_max_length() is not None
|
1279 |
+
else None
|
1280 |
+
)
|
1281 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1282 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1283 |
+
else:
|
1284 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1285 |
+
max_cache_length = None
|
1286 |
+
|
1287 |
+
# Keep only the unprocessed tokens:
|
1288 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1289 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1290 |
+
# input)
|
1291 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1292 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1293 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1294 |
+
# input_ids based on the past_length.
|
1295 |
+
elif past_length < input_ids.shape[1]:
|
1296 |
+
input_ids = input_ids[:, past_length:]
|
1297 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1298 |
+
|
1299 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1300 |
+
if (
|
1301 |
+
max_cache_length is not None
|
1302 |
+
and attention_mask is not None
|
1303 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1304 |
+
):
|
1305 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1306 |
+
|
1307 |
+
position_ids = kwargs.get("position_ids", None)
|
1308 |
+
if attention_mask is not None and position_ids is None:
|
1309 |
+
# create position_ids on the fly for batch generation
|
1310 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1311 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1312 |
+
if past_key_values:
|
1313 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1314 |
+
|
1315 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1316 |
+
if inputs_embeds is not None and past_key_values is None:
|
1317 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1318 |
+
else:
|
1319 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1320 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1321 |
+
# TODO: use `next_tokens` directly instead.
|
1322 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1323 |
+
|
1324 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1325 |
+
if cache_position is None:
|
1326 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1327 |
+
elif use_cache:
|
1328 |
+
cache_position = cache_position[-input_length:]
|
1329 |
+
|
1330 |
+
if has_static_cache:
|
1331 |
+
past_key_values = None
|
1332 |
+
|
1333 |
+
model_inputs.update(
|
1334 |
+
{
|
1335 |
+
"position_ids": position_ids,
|
1336 |
+
"cache_position": cache_position,
|
1337 |
+
"past_key_values": past_key_values,
|
1338 |
+
"use_cache": use_cache,
|
1339 |
+
"attention_mask": attention_mask,
|
1340 |
+
}
|
1341 |
+
)
|
1342 |
+
return model_inputs
|
1343 |
+
|
1344 |
+
@staticmethod
|
1345 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1346 |
+
reordered_past = ()
|
1347 |
+
for layer_past in past_key_values:
|
1348 |
+
reordered_past += (
|
1349 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1350 |
+
)
|
1351 |
+
return reordered_past
|
1352 |
+
|
1353 |
+
|
1354 |
+
@add_start_docstrings(
|
1355 |
+
"""
|
1356 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1357 |
+
|
1358 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1359 |
+
(e.g. GPT-2) do.
|
1360 |
+
|
1361 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1362 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1363 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1364 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1365 |
+
each row of the batch).
|
1366 |
+
""",
|
1367 |
+
LLAMA_START_DOCSTRING,
|
1368 |
+
)
|
1369 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1370 |
+
def __init__(self, config):
|
1371 |
+
super().__init__(config)
|
1372 |
+
self.num_labels = config.num_labels
|
1373 |
+
self.model = LlamaModel(config)
|
1374 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1375 |
+
|
1376 |
+
# Initialize weights and apply final processing
|
1377 |
+
self.post_init()
|
1378 |
+
|
1379 |
+
def get_input_embeddings(self):
|
1380 |
+
return self.model.embed_tokens
|
1381 |
+
|
1382 |
+
def set_input_embeddings(self, value):
|
1383 |
+
self.model.embed_tokens = value
|
1384 |
+
|
1385 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1386 |
+
def forward(
|
1387 |
+
self,
|
1388 |
+
input_ids: torch.LongTensor = None,
|
1389 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1391 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1392 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1393 |
+
labels: Optional[torch.LongTensor] = None,
|
1394 |
+
use_cache: Optional[bool] = None,
|
1395 |
+
output_attentions: Optional[bool] = None,
|
1396 |
+
output_hidden_states: Optional[bool] = None,
|
1397 |
+
return_dict: Optional[bool] = None,
|
1398 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1399 |
+
r"""
|
1400 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1401 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1402 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1403 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1404 |
+
"""
|
1405 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1406 |
+
|
1407 |
+
transformer_outputs = self.model(
|
1408 |
+
input_ids,
|
1409 |
+
attention_mask=attention_mask,
|
1410 |
+
position_ids=position_ids,
|
1411 |
+
past_key_values=past_key_values,
|
1412 |
+
inputs_embeds=inputs_embeds,
|
1413 |
+
use_cache=use_cache,
|
1414 |
+
output_attentions=output_attentions,
|
1415 |
+
output_hidden_states=output_hidden_states,
|
1416 |
+
return_dict=return_dict,
|
1417 |
+
)
|
1418 |
+
hidden_states = transformer_outputs[0]
|
1419 |
+
logits = self.score(hidden_states)
|
1420 |
+
|
1421 |
+
if input_ids is not None:
|
1422 |
+
batch_size = input_ids.shape[0]
|
1423 |
+
else:
|
1424 |
+
batch_size = inputs_embeds.shape[0]
|
1425 |
+
|
1426 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1427 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1428 |
+
if self.config.pad_token_id is None:
|
1429 |
+
sequence_lengths = -1
|
1430 |
+
else:
|
1431 |
+
if input_ids is not None:
|
1432 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1433 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1434 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1435 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1436 |
+
else:
|
1437 |
+
sequence_lengths = -1
|
1438 |
+
|
1439 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1440 |
+
|
1441 |
+
loss = None
|
1442 |
+
if labels is not None:
|
1443 |
+
labels = labels.to(logits.device)
|
1444 |
+
if self.config.problem_type is None:
|
1445 |
+
if self.num_labels == 1:
|
1446 |
+
self.config.problem_type = "regression"
|
1447 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1448 |
+
self.config.problem_type = "single_label_classification"
|
1449 |
+
else:
|
1450 |
+
self.config.problem_type = "multi_label_classification"
|
1451 |
+
|
1452 |
+
if self.config.problem_type == "regression":
|
1453 |
+
loss_fct = MSELoss()
|
1454 |
+
if self.num_labels == 1:
|
1455 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1456 |
+
else:
|
1457 |
+
loss = loss_fct(pooled_logits, labels)
|
1458 |
+
elif self.config.problem_type == "single_label_classification":
|
1459 |
+
loss_fct = CrossEntropyLoss()
|
1460 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1461 |
+
elif self.config.problem_type == "multi_label_classification":
|
1462 |
+
loss_fct = BCEWithLogitsLoss()
|
1463 |
+
loss = loss_fct(pooled_logits, labels)
|
1464 |
+
if not return_dict:
|
1465 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1466 |
+
return ((loss,) + output) if loss is not None else output
|
1467 |
+
|
1468 |
+
return SequenceClassifierOutputWithPast(
|
1469 |
+
loss=loss,
|
1470 |
+
logits=pooled_logits,
|
1471 |
+
past_key_values=transformer_outputs.past_key_values,
|
1472 |
+
hidden_states=transformer_outputs.hidden_states,
|
1473 |
+
attentions=transformer_outputs.attentions,
|
1474 |
+
)
|
1475 |
+
|
1476 |
+
|
1477 |
+
@add_start_docstrings(
|
1478 |
+
"""
|
1479 |
+
The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
|
1480 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1481 |
+
""",
|
1482 |
+
LLAMA_START_DOCSTRING,
|
1483 |
+
)
|
1484 |
+
class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
1485 |
+
base_model_prefix = "transformer"
|
1486 |
+
|
1487 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
|
1488 |
+
def __init__(self, config):
|
1489 |
+
super().__init__(config)
|
1490 |
+
self.transformer = LlamaModel(config)
|
1491 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1492 |
+
|
1493 |
+
# Initialize weights and apply final processing
|
1494 |
+
self.post_init()
|
1495 |
+
|
1496 |
+
def get_input_embeddings(self):
|
1497 |
+
return self.transformer.embed_tokens
|
1498 |
+
|
1499 |
+
def set_input_embeddings(self, value):
|
1500 |
+
self.transformer.embed_tokens = value
|
1501 |
+
|
1502 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1503 |
+
def forward(
|
1504 |
+
self,
|
1505 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1506 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1507 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1508 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1509 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1510 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1511 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1512 |
+
output_attentions: Optional[bool] = None,
|
1513 |
+
output_hidden_states: Optional[bool] = None,
|
1514 |
+
return_dict: Optional[bool] = None,
|
1515 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1516 |
+
r"""
|
1517 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1518 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1519 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1520 |
+
are not taken into account for computing the loss.
|
1521 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1522 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1523 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1524 |
+
are not taken into account for computing the loss.
|
1525 |
+
"""
|
1526 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1527 |
+
|
1528 |
+
outputs = self.transformer(
|
1529 |
+
input_ids,
|
1530 |
+
attention_mask=attention_mask,
|
1531 |
+
position_ids=position_ids,
|
1532 |
+
past_key_values=past_key_values,
|
1533 |
+
inputs_embeds=inputs_embeds,
|
1534 |
+
output_attentions=output_attentions,
|
1535 |
+
output_hidden_states=output_hidden_states,
|
1536 |
+
return_dict=return_dict,
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
sequence_output = outputs[0]
|
1540 |
+
|
1541 |
+
logits = self.qa_outputs(sequence_output)
|
1542 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1543 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1544 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1545 |
+
|
1546 |
+
total_loss = None
|
1547 |
+
if start_positions is not None and end_positions is not None:
|
1548 |
+
# If we are on multi-GPU, split add a dimension
|
1549 |
+
if len(start_positions.size()) > 1:
|
1550 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1551 |
+
if len(end_positions.size()) > 1:
|
1552 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1553 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1554 |
+
ignored_index = start_logits.size(1)
|
1555 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1556 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1557 |
+
|
1558 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1559 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1560 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1561 |
+
total_loss = (start_loss + end_loss) / 2
|
1562 |
+
|
1563 |
+
if not return_dict:
|
1564 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1565 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1566 |
+
|
1567 |
+
return QuestionAnsweringModelOutput(
|
1568 |
+
loss=total_loss,
|
1569 |
+
start_logits=start_logits,
|
1570 |
+
end_logits=end_logits,
|
1571 |
+
hidden_states=outputs.hidden_states,
|
1572 |
+
attentions=outputs.attentions,
|
1573 |
+
)
|
smash_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"pruning_ratio": 0.0,
|
7 |
+
"factorizers": "None",
|
8 |
+
"quantizers": "['llm-int8']",
|
9 |
+
"weight_quantization_bits": 8,
|
10 |
+
"output_deviation": 0.005,
|
11 |
+
"compilers": "None",
|
12 |
+
"static_batch": true,
|
13 |
+
"static_shape": true,
|
14 |
+
"controlnet": "None",
|
15 |
+
"unet_dim": 4,
|
16 |
+
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelspe2m8o30",
|
18 |
+
"batch_size": 1,
|
19 |
+
"model_name": "FlagAlpha/Llama3-Chinese-8B-Instruct",
|
20 |
+
"task": "text_text_generation",
|
21 |
+
"max_batch_size": 1,
|
22 |
+
"qtype_weight": "torch.qint8",
|
23 |
+
"qtype_activation": "torch.quint8",
|
24 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
25 |
+
"qscheme": "torch.per_tensor_symmetric",
|
26 |
+
"qconfig": "x86",
|
27 |
+
"group_size": 128,
|
28 |
+
"damp_percent": 0.1,
|
29 |
+
"save_load_fn": "bitsandbytes"
|
30 |
+
}
|
31 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|end_of_text|>",
|
2056 |
+
"legacy": false,
|
2057 |
+
"model_input_names": [
|
2058 |
+
"input_ids",
|
2059 |
+
"attention_mask"
|
2060 |
+
],
|
2061 |
+
"model_max_length": 1000000000000000019884624838656,
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|