File size: 4,792 Bytes
6bf83db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480015d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf83db
 
 
 
 
e8d9bed
 
6bf83db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
language:
- fr
library_name: transformers
tags:
- NMT
- orféo
- pytorch
- pictograms
- translation
metrics:
- bleu
inference: false
---

# t2p-nmt-orfeo

*t2p-nmt-orfeo* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)).
The model is used only for **inference**. 

## Training details

The model was trained with [Fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md).

### Datasets

The [Propicto-orféo dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CEFC-Orféo corpus. 
This dataset was presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. 
The dataset was split into training, validation, and test sets.
| **Split** | **Number of utterances** |
|:-----------:|:-----------------------:|
| train | 231,374 |
| valid | 28,796 |
| test | 29,009 |

### Parameters

This is the arguments in the training pipeline :

```bash
fairseq-train \
    data-bin/orfeo.tokenized.fr-frp \
    --arch transformer_iwslt_de_en --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --dropout 0.3 --weight-decay 0.0001 \
    --save-dir exp_orfeo/checkpoints/nmt_fr_frp_orfeo \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --max-tokens 4096 \
    --eval-bleu \
    --eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
    --eval-bleu-detok moses \
    --eval-bleu-remove-bpe \
    --eval-bleu-print-samples \
    --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
    --max-epoch 40 \
    --keep-best-checkpoints 5 \
    --keep-last-epochs 5
```

### Evaluation

The model was evaluated with BLEU, where we compared the reference pictogram translation with the model hypothesis.

```bash
fairseq-generate exp_orfeo/data-bin/orfeo.tokenized.fr-frp \
    --path exp_orfeo/checkpoints/nmt_fr_frp_orfeo/checkpoint.best_bleu_87.2803.pt \
    --batch-size 128 --beam 5 --remove-bpe > gen_orfeo.out
```
The output file prints the following information :
```txt
S-16709	peut-être vous pouvez vous exprimer
T-16709	vous pouvoir exprimer
H-16709	-0.0769597738981247	vous pouvoir exprimer
D-16709	-0.0769597738981247	vous pouvoir exprimer
P-16709	-0.0936 -0.0924 -0.0065 -0.1154
Generate test with beam=5: BLEU4 = 87.43, 95.2/89.8/85.0/80.4 (BP=1.000, ratio=1.006, syslen=250949, reflen=249520)
```

### Results

Comparison to other translation models :
| **Model** | **validation** | **test** |
|:-----------:|:-----------------------:|:-----------------------:|
| t2p-t5-large-orféo | 85.2 | 85.8 |
| **t2p-nmt-orféo** | **87.2** | **87.4** | 
| t2p-mbart-large-cc25-orfeo | 75.2 | 75.6 |
| t2p-nllb-200-distilled-600M-orfeo | 86.3 | 86.9 |

### Environmental Impact

Training was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total.

## Using t2p-nmt-orfeo model

The scripts to use the *t2p-nmt-orfeo* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms).

## Information

- **Language(s):** French
- **License:** Apache-2.0
- **Developed by:** Cécile Macaire
- **Funded by**
  - GENCI-IDRIS (Grant 2023-AD011013625R1)
  - PROPICTO ANR-20-CE93-0005
- **Authors**
  - Cécile Macaire
  - Chloé Dion
  - Emmanuelle Esperança-Rodier
  - Benjamin Lecouteux
  - Didier Schwab


## Citation

If you use this model for your own research work, please cite as follows:

```bibtex
@inproceedings{macaire_jeptaln2024,
  title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
  author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
  url = {https://inria.hal.science/hal-04623007},
  booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
  address = {Toulouse, France},
  publisher = {{ATALA \& AFPC}},
  volume = {1 : articles longs et prises de position},
  pages = {22-35},
  year = {2024}
}
```