File size: 4,792 Bytes
6bf83db 480015d 6bf83db e8d9bed 6bf83db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
language:
- fr
library_name: transformers
tags:
- NMT
- orféo
- pytorch
- pictograms
- translation
metrics:
- bleu
inference: false
---
# t2p-nmt-orfeo
*t2p-nmt-orfeo* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)).
The model is used only for **inference**.
## Training details
The model was trained with [Fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md).
### Datasets
The [Propicto-orféo dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CEFC-Orféo corpus.
This dataset was presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024.
The dataset was split into training, validation, and test sets.
| **Split** | **Number of utterances** |
|:-----------:|:-----------------------:|
| train | 231,374 |
| valid | 28,796 |
| test | 29,009 |
### Parameters
This is the arguments in the training pipeline :
```bash
fairseq-train \
data-bin/orfeo.tokenized.fr-frp \
--arch transformer_iwslt_de_en --share-decoder-input-output-embed \
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
--dropout 0.3 --weight-decay 0.0001 \
--save-dir exp_orfeo/checkpoints/nmt_fr_frp_orfeo \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--max-tokens 4096 \
--eval-bleu \
--eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
--eval-bleu-detok moses \
--eval-bleu-remove-bpe \
--eval-bleu-print-samples \
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
--max-epoch 40 \
--keep-best-checkpoints 5 \
--keep-last-epochs 5
```
### Evaluation
The model was evaluated with BLEU, where we compared the reference pictogram translation with the model hypothesis.
```bash
fairseq-generate exp_orfeo/data-bin/orfeo.tokenized.fr-frp \
--path exp_orfeo/checkpoints/nmt_fr_frp_orfeo/checkpoint.best_bleu_87.2803.pt \
--batch-size 128 --beam 5 --remove-bpe > gen_orfeo.out
```
The output file prints the following information :
```txt
S-16709 peut-être vous pouvez vous exprimer
T-16709 vous pouvoir exprimer
H-16709 -0.0769597738981247 vous pouvoir exprimer
D-16709 -0.0769597738981247 vous pouvoir exprimer
P-16709 -0.0936 -0.0924 -0.0065 -0.1154
Generate test with beam=5: BLEU4 = 87.43, 95.2/89.8/85.0/80.4 (BP=1.000, ratio=1.006, syslen=250949, reflen=249520)
```
### Results
Comparison to other translation models :
| **Model** | **validation** | **test** |
|:-----------:|:-----------------------:|:-----------------------:|
| t2p-t5-large-orféo | 85.2 | 85.8 |
| **t2p-nmt-orféo** | **87.2** | **87.4** |
| t2p-mbart-large-cc25-orfeo | 75.2 | 75.6 |
| t2p-nllb-200-distilled-600M-orfeo | 86.3 | 86.9 |
### Environmental Impact
Training was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total.
## Using t2p-nmt-orfeo model
The scripts to use the *t2p-nmt-orfeo* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms).
## Information
- **Language(s):** French
- **License:** Apache-2.0
- **Developed by:** Cécile Macaire
- **Funded by**
- GENCI-IDRIS (Grant 2023-AD011013625R1)
- PROPICTO ANR-20-CE93-0005
- **Authors**
- Cécile Macaire
- Chloé Dion
- Emmanuelle Esperança-Rodier
- Benjamin Lecouteux
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{macaire_jeptaln2024,
title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
url = {https://inria.hal.science/hal-04623007},
booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
address = {Toulouse, France},
publisher = {{ATALA \& AFPC}},
volume = {1 : articles longs et prises de position},
pages = {22-35},
year = {2024}
}
```
|