File size: 18,338 Bytes
3a039f0
e2f11ac
8604307
3a039f0
249fcc5
 
 
 
c8b8aa5
 
3a039f0
 
 
a340739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
---
language: pt-br
license: mit
tags:
- LegalNLP
- NLP
- legal field
- python
library: 
 - Numpy
---


# ***LegalNLP*** - Natural Language Processing Methods for the Brazilian Legal Language :balance_scale:

### The library of Natural Language Processing for Brazilian legal language, *LegalNLP*, was born in a partnership between Brazilian researchers and the legal tech [Tikal Tech](https://www.tikal.tech) based in São Paulo, Brazil. Besides containing pre-trained language models for the Brazilian legal language, ***LegalNLP*** provides functions that can facilitate the manipulation of legal texts in Portuguese and demonstration/tutorials to help people in their own work.

You can access our paper by clicking [**here**](https://arxiv.org/abs/2110.15709). 

If you use our library in your academic work, please cite us in the following way

    @article{polo2021legalnlp,
      title={LegalNLP--Natural Language Processing methods for the Brazilian Legal Language},
      author={Polo, Felipe Maia and Mendon{\c{c}}a, Gabriel Caiaffa Floriano and Parreira, Kau{\^e} Capellato J and Gianvechio, Lucka and Cordeiro, Peterson and Ferreira, Jonathan Batista and de Lima, Leticia Maria Paz and Maia, Ant{\^o}nio Carlos do Amaral and Vicente, Renato},
      journal={arXiv preprint arXiv:2110.15709},
      year={2021}
    }

--------------

## Summary

0. [Accessing the Language Models](#0)
1. [ Introduction / Installing package](#1)
2. [Fuctions ](#2)
    1.  [ Text Cleaning Functions](#2.1)
    2.  [Other Functions](#2.2)
3. [ Language Models (Details / How to use)](#3)
    1.  [ Phraser ](#3.1)
    2.  [ Word2Vec/Doc2Vec ](#3.2)
    3.  [ FastText ](#3.3)
    4.  [ BERTikal ](#3.4)
4. [ Demonstrations / Tutorials](#4)
5. [ References](#5)

--------------

<a name="0"></a>
## 0\. Accessing the Language Models


All our models can be found [here](https://drive.google.com/drive/folders/1tCccOXPLSEAEUQtcWXvED3YaNJi3p7la?usp=sharing).

Some models can be download directly using our function `get_premodel` (more details in section [Other Functions](#2.2)).


Please contact *felipemaiapolo@gmail.com* if you have any problem accessing the language models. 

--------------

<a name="1"></a>
## 1\. Introduction / Installing package
*LegalNLP* is promising given the scarcity of Natural Language Processing resources focused on the Brazilian legal language. It is worth mentioning that our library was made for Python, one of the most well-known programming languages for machine learning.


You can install our package running the following command on terminal
``` :sh
$ pip install git+https://github.com/felipemaiapolo/legalnlp
```

You can load all our functions running the following command

```python
from legalnlp.clean_functions import *
from legalnlp.get_premodel import *
```


--------------

<a name="2"></a>
## 2\. Functions
<a name="2.1"></a>
### 2.1\.  Text Cleaning Functions


<a name="2.1.1"></a>
#### 2.1.1\. `clean(text, lower=True, return_masked=False)`
Function for cleaning texts to be used (optional) in conjunction with Doc2Vec, Word2Vec, and FastText models. We use RegEx to mask/extract information such as email addresses, URLs, dates, numbers, monetary values, etc.

**input**:  

- *text*, **str**;
 
- *lower*, **bool**, default=**True**. If lower==True, function lower cases the whole text. Note that all the models (except BERT) were trained with lower cased texts;

- *return_masked*, **bool**, default=**True**.  If return_masked == False, the function outputs a clean text. Otherwise, it returns a dictionary containing the clean text and the information extracted by RegEx;

**output**:

-  Clean text or dictionary, depending on the *return_masked* parameter;


<a name="2.1.2"></a>
#### 2.1.2\.`clean_bert(text)`

Function for cleaning the texts to be used (optional) in conjunction with the BERT model.

**input:**  

- *text*, **str**.

**output:** 

-  **str** with clean text.

<a name="2.2"></a>
### 2.2\.  Other functions

#### 2.2.2\. `get_premodel(model)` 

Function to download a pre-trained model in the same folder as the file that is being executed.

**input:**  

- *model*, **str**. Must contain the name of the pre-trained model that one wants to use. There are these options:  
    - **model = "bert"**: Download a .zip file containing BERTikal model and unzip it.
    - **model = "wdoc"**: Download Word2Vec and Do2vec pre-trained models in a.zip file and unzip it. It has 2 two files, one with an size 100 Doc2Vec Distributed Memory/ Word2Vec Continuous Bag-of-Words (CBOW) embeddings model and other with an size 100 Doc2Vec Distributed Bag-of-Words (DBOW)/ Word2Vec Skip-Gram (SG)  embeddings model.
    - **model = "fasttext"**: Download a .zip file containing 100 sized FastText CBOW/SG models and unzip it.
    - **model = "phraser"**: Download Phraser pre-trained model in a .zip file and unzip it. It has 2 two files with phraser1 and phreaser2. We explain how to use them in Section [ Phraser ](#3.1). 
    - **model = "w2vnilc"**: Download size 100 Word2Vec CBOW model trained by "Núcleo Interinstitucional de Linguística Computacional - USP" embeddings model in a .zip file and unzip it. [Click here for more details](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc).
    - **model = "neuralmindbase"**: Download a .zip file containing base BERT model (PyTorch), trained by NeuralMind and unzip it. For more informations about BERT models made by NeuralMind go to [their GitHub repo](https://github.com/neuralmind-ai/portuguese-bert).
    - **model = "neuralmindlarge"**: Download a .zip file containing large BERT model (PyTorch), trained by NeuralMind and unzip it. For more informations about BERT models made by NeuralMind go to [their GitHub repo](https://github.com/neuralmind-ai/portuguese-bert).


**output:** 

- True if download of some model was made and False otherwise.


#### 2.2.1\. `extract_features_bert(path_model, path_tokenizer, data, gpu=True)`

Function for extracting features with the BERT model (This function is not accessed through the package installation, but you can find it [here](https://github.com/felipemaiapolo/legalnlp/blob/main/demo/BERT/extract_features_bert.ipynb)).


**Input:**  

- *path_model*, **str**. Must contain the path of the pre-trained model;

- *path_tokenizer*, **str**. Must contain the path of tokenizer;

- *data*, **list**. Must contain a list of texts that will be extracted features;

- *gpu*, **bool**, default=**True**. If gpu==False, the GPU will not be used in the model application (we recommend feature extraction to be done using Google Colab).


**Output:** 

- **DataFrame** with features extracted by BERT model.


<a name="3"></a>
## 3\. Model Languages

<a name="3.1"></a>
### 3.1\. Phraser

Phraser is a statistical method proposed in the natural language processing
literature [1] for identifying which words when they appear
together, can be considered as unique tokens. This method application is able to
identify the relevance of the occurrence of a bigram against the occurrence of the
words that make it up separately. Thus, we can identify that a bigram like "São
Paulo" should be treated as a single token, for example. If the method is applied
a second time in sequence, we can check which are the relevant trigrams and
quadrigrams. Since the two applications should be done with different Phraser
models, it can be the case that the second application identifies bigrams that were
not identified by the first model.

This model is compatible with the `clean` function, but it is not necessary to use it before. Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/phrases.html) for more details. Preferably use Gensim version 3.8.3.

#### Using *Phraser*
Installing Gensim


```python
!pip install gensim=='3.8.3' 
```

Importing package and loading our two Phraser models.


```python
#Importing packages
from gensim.models.phrases import Phraser 

#Loading two Phraser models
phraser1=Phraser.load('models_phraser/phraser1')
phraser2=Phraser.load('models_phraser/phraser2')
```


Applying Phraser once and twice to check output


```python
txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios'
tokens=txt.split()

print('Clean Text: "'+' '.join(tokens)+'"')
print('\nApplying Phraser 1x: "'+' '.join(phraser1[tokens])+'"')
print('\nApplying Phraser 2x: "'+' '.join(phraser2[phraser1[tokens]])+'"')
```

    Clean Text: "direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios"
    
    Applying Phraser 1x: "direito do consumidor origem : bangu regional xxix juizado_especial civel_ação : [processo] - - recte : fundo de investimento em direitos_creditórios"
    
    Applying Phraser 2x: "direito do consumidor origem : bangu_regional xxix juizado_especial_civel_ação : [processo] - - recte : fundo de investimento em direitos_creditórios"

<a name="3.2"></a>
### 3.2\. Word2Vec/Doc2Vec

Our first models for generating vector representation for tokens and
texts (embeddings) are variations of the Word2Vec [1,
2] and Doc2Vec [3] methods. In short, the
Word2Vec methods generate embeddings for tokens5 and that somehow capture
the meaning of the various textual elements, based on the contexts in which these
elements appear. Doc2Vec methods are extensions/modifications of Word2Vec
for generating whole text representations.

The Word2Vec and Doc2Vec methods are presented together in this section because they were trained together using the Gensim package. Both models are compatible with the `clean` function, but it is not necessary to use it before. Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/doc2vec.html) for more details. Preferably use Gensim version 3.8.3.


Below we have a summary table with some important information about the trained models:



| Filenames       |  Doc2Vec | Word2Vec   | Size | Windows
|:-------------------:|:--------------:|:--------------:|:--------------:|:--------------:|
| ```w2v_d2v_dm*```     | Distributed Memory       (DM)             | Continuous Bag-of-Words (CBOW)          | 100, 200, 300 | 15 
| ```w2v_d2v_dbow*``` | Distributed Bag-of-Words (DBOW)               | Skip-Gram (SG)                   | 100, 200, 300      | 15 





#### Using *Word2Vec*

Installing Gensim


```python
!pip install gensim=='3.8.3' 
```

Loading W2V (all the files for the specific model should be in the same folder)


```python
from gensim.models import KeyedVectors

#Loading a W2V model
w2v=KeyedVectors.load('models_w2v_d2v/w2v_d2v_dm_size_100_window_15_epochs_20')
w2v=w2v.wv
```
Viewing the first 10 entries of 'juiz' vector


```python
w2v['juiz'][:10]
```




    array([ 6.570131  , -1.262787  ,  5.156106  , -8.943866  , -5.884408  ,
           -7.717058  ,  1.8819941 , -8.02803   , -0.66901577,  6.7223144 ],
          dtype=float32)




Viewing closest tokens to 'juiz'

```python
w2v.most_similar('juiz')
```




    [('juíza', 0.8210258483886719),
     ('juiza', 0.7306275367736816),
     ('juíz', 0.691645085811615),
     ('juízo', 0.6605231165885925),
     ('magistrado', 0.6213295459747314),
     ('mmª_juíza', 0.5510469675064087),
     ('juizo', 0.5494943261146545),
     ('desembargador', 0.5313084721565247),
     ('mmjuiz', 0.5277603268623352),
     ('fabíola_melo_feijão_juíza', 0.5043971538543701)]


#### Using *Doc2Vec*
Installing Gensim


```python
!pip install gensim=='3.8.3' 
```

Loading D2V (all the files for the specific model should be in the same folder)


```python
from gensim.models import Doc2Vec

#Loading a D2V model
d2v=Doc2Vec.load('models_w2v_d2v/w2v_d2v_dm_size_100_window_15_epochs_20')
```

Inferring vector for a text


```python
txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios'
tokens=txt.split()

txt_vec=d2v.infer_vector(tokens, epochs=20)
txt_vec[:10]
```




    array([ 0.02626514, -0.3876521 , -0.24873355, -0.0318402 ,  0.3343679 ,
           -0.21307918,  0.07193747,  0.02030687,  0.407305  ,  0.20065512],
          dtype=float32)




<a name="3.3"></a>
### 3.3\. FastText

The FastText [4] methods, like Word2Vec, form a class of
models for creating vector representations (embeddings) for tokens. Unlike
Word2Vec, which disregards the morphology of the tokens and allocates a
different vector for each one of them, the FastText methods consider that each one
of the tokens is formed by n-grams of characters or substrings. In this way, the
representation of tokens which do not appear in the training set can be inferred
from the representation of substrings. Also, rare tokens can have more robust
representations than those returned by the Word2Vec methods.

Models are compatible with the `clean` function, but it is not necessary to use it. Remember to at least make all letters lowercase. Please check our paper or the [Gensim page](https://radimrehurek.com/gensim/models/fasttext.html) for more details. Preferably use Gensim version 4.0.1.

Below we have a summary table with some important information about the trained models:

| Filenames      | FastText   | Sizes | Windows
|:-------------------:|:--------------:|:--------------:|:--------------:|
| ```fasttext_cbow*```         | Continuous Bag-of-Words (CBOW)          | 100, 200, 300 | 15 
| ```fasttext_sg*```             | Skip-Gram (SG)                   | 100, 200, 300      | 15 


#### Using *FastText*

installing Gensim


```python
!pip install gensim=='4.0.1' 
```

Loading FastText (all the files for the specific model should be in the same folder)


```python
from gensim.models import FastText

#Loading a FastText model
fast=FastText.load('models_fasttext/fasttext_sg_size_100_window_15_epochs_20')
fast=fast.wv
```

Viewing the first 10 entries of 'juiz' vector



```python
fast['juiz'][:10]
```




    array([ 0.46769685,  0.62529474,  0.08549586,  0.09621219, -0.09998254,
           -0.07897531,  0.32838237, -0.33229044, -0.05959201, -0.5865443 ],
          dtype=float32)



Viewing the first 10 vector entries of a token that was not in our vocabulary


```python
fast['juizasjashdkjhaskda'][:10]
```




    array([ 0.02795791,  0.1361525 ,  0.1340836 , -0.36824217, -0.11549155,
           -0.11167661,  0.32045627, -0.33701468, -0.05198409, -0.05513595],
          dtype=float32)


<a name="3.4"></a>
### 3.4\. BERTikal


We call BERTikal our BERT-Base model   (cased) [5] for Brazilian legal language. BERT models are models based on neural network architectures called Transformers. BERT models are trained with large sets of texts using the self-supervised paradigm, which is basically solving unsupervised problems using supervised techniques. A pre-trained BERT model is capable of generating representations for entire texts and can be adapted for a supervised task, e.g., text classification or question answering, using the fine-tuning mechanism. 

BERTikal was trained using the Python package [Transformers](https://huggingface.co/transformers/})  in its 4.2.2 version and its checkpoint made available by us is compatible with [PyTorch](https://pytorch.org/) 1.9.0. Although we expose the versions of both packages, more current versions can be used in applications of the model, as long as there are no relevant version conflicts.

Our model was trained from the checkpoint made available in [Neuralmind’s Github repository](https://github.com/neuralmind-ai/portuguese-bert) by the authors of recent research [6].

#### Using *BERTikal*

Installing Torch e Transformers


```python
!pip install torch=='1.8.1' transformers=='4.2.2'
```

Loading BERT (all the files for the specific model should be in the same folder)


```python
from transformers import BertModel, BertTokenizer

bert_tokenizer = BertTokenizer.from_pretrained('model_bertikal/', do_lower_case=False)
bert_model = BertModel.from_pretrained('model_bertikal/')
```

--------------

<a name="4"></a>
## 4\. Demonstrations

For a better understanding of the application of these models, below are the links to notebooks where we apply them to a legal dataset using various classification models such as Logistic Regression and CatBoost:

- **BERT notebook** : 
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/BERT/BERT_TUTORIAL.ipynb)
 
- **Word2Vec notebook** : 
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Word2Vec/Word2Vec_TUTORIAL.ipynb)

- **Doc2Vec notebook** :
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Doc2Vec/Doc2Vec_TUTORIAL.ipynb)



--------------

<a name="5"></a>
## 5\. References

[1] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119.

[2] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

[3] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196.
PMLR.

[4] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146.

[5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[6] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT
models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent
Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23