File size: 18,338 Bytes
3a039f0 e2f11ac 8604307 3a039f0 249fcc5 c8b8aa5 3a039f0 a340739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
---
language: pt-br
license: mit
tags:
- LegalNLP
- NLP
- legal field
- python
library:
- Numpy
---
# ***LegalNLP*** - Natural Language Processing Methods for the Brazilian Legal Language :balance_scale:
### The library of Natural Language Processing for Brazilian legal language, *LegalNLP*, was born in a partnership between Brazilian researchers and the legal tech [Tikal Tech](https://www.tikal.tech) based in São Paulo, Brazil. Besides containing pre-trained language models for the Brazilian legal language, ***LegalNLP*** provides functions that can facilitate the manipulation of legal texts in Portuguese and demonstration/tutorials to help people in their own work.
You can access our paper by clicking [**here**](https://arxiv.org/abs/2110.15709).
If you use our library in your academic work, please cite us in the following way
@article{polo2021legalnlp,
title={LegalNLP--Natural Language Processing methods for the Brazilian Legal Language},
author={Polo, Felipe Maia and Mendon{\c{c}}a, Gabriel Caiaffa Floriano and Parreira, Kau{\^e} Capellato J and Gianvechio, Lucka and Cordeiro, Peterson and Ferreira, Jonathan Batista and de Lima, Leticia Maria Paz and Maia, Ant{\^o}nio Carlos do Amaral and Vicente, Renato},
journal={arXiv preprint arXiv:2110.15709},
year={2021}
}
--------------
## Summary
0. [Accessing the Language Models](#0)
1. [ Introduction / Installing package](#1)
2. [Fuctions ](#2)
1. [ Text Cleaning Functions](#2.1)
2. [Other Functions](#2.2)
3. [ Language Models (Details / How to use)](#3)
1. [ Phraser ](#3.1)
2. [ Word2Vec/Doc2Vec ](#3.2)
3. [ FastText ](#3.3)
4. [ BERTikal ](#3.4)
4. [ Demonstrations / Tutorials](#4)
5. [ References](#5)
--------------
<a name="0"></a>
## 0\. Accessing the Language Models
All our models can be found [here](https://drive.google.com/drive/folders/1tCccOXPLSEAEUQtcWXvED3YaNJi3p7la?usp=sharing).
Some models can be download directly using our function `get_premodel` (more details in section [Other Functions](#2.2)).
Please contact *felipemaiapolo@gmail.com* if you have any problem accessing the language models.
--------------
<a name="1"></a>
## 1\. Introduction / Installing package
*LegalNLP* is promising given the scarcity of Natural Language Processing resources focused on the Brazilian legal language. It is worth mentioning that our library was made for Python, one of the most well-known programming languages for machine learning.
You can install our package running the following command on terminal
``` :sh
$ pip install git+https://github.com/felipemaiapolo/legalnlp
```
You can load all our functions running the following command
```python
from legalnlp.clean_functions import *
from legalnlp.get_premodel import *
```
--------------
<a name="2"></a>
## 2\. Functions
<a name="2.1"></a>
### 2.1\. Text Cleaning Functions
<a name="2.1.1"></a>
#### 2.1.1\. `clean(text, lower=True, return_masked=False)`
Function for cleaning texts to be used (optional) in conjunction with Doc2Vec, Word2Vec, and FastText models. We use RegEx to mask/extract information such as email addresses, URLs, dates, numbers, monetary values, etc.
**input**:
- *text*, **str**;
- *lower*, **bool**, default=**True**. If lower==True, function lower cases the whole text. Note that all the models (except BERT) were trained with lower cased texts;
- *return_masked*, **bool**, default=**True**. If return_masked == False, the function outputs a clean text. Otherwise, it returns a dictionary containing the clean text and the information extracted by RegEx;
**output**:
- Clean text or dictionary, depending on the *return_masked* parameter;
<a name="2.1.2"></a>
#### 2.1.2\.`clean_bert(text)`
Function for cleaning the texts to be used (optional) in conjunction with the BERT model.
**input:**
- *text*, **str**.
**output:**
- **str** with clean text.
<a name="2.2"></a>
### 2.2\. Other functions
#### 2.2.2\. `get_premodel(model)`
Function to download a pre-trained model in the same folder as the file that is being executed.
**input:**
- *model*, **str**. Must contain the name of the pre-trained model that one wants to use. There are these options:
- **model = "bert"**: Download a .zip file containing BERTikal model and unzip it.
- **model = "wdoc"**: Download Word2Vec and Do2vec pre-trained models in a.zip file and unzip it. It has 2 two files, one with an size 100 Doc2Vec Distributed Memory/ Word2Vec Continuous Bag-of-Words (CBOW) embeddings model and other with an size 100 Doc2Vec Distributed Bag-of-Words (DBOW)/ Word2Vec Skip-Gram (SG) embeddings model.
- **model = "fasttext"**: Download a .zip file containing 100 sized FastText CBOW/SG models and unzip it.
- **model = "phraser"**: Download Phraser pre-trained model in a .zip file and unzip it. It has 2 two files with phraser1 and phreaser2. We explain how to use them in Section [ Phraser ](#3.1).
- **model = "w2vnilc"**: Download size 100 Word2Vec CBOW model trained by "Núcleo Interinstitucional de Linguística Computacional - USP" embeddings model in a .zip file and unzip it. [Click here for more details](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc).
- **model = "neuralmindbase"**: Download a .zip file containing base BERT model (PyTorch), trained by NeuralMind and unzip it. For more informations about BERT models made by NeuralMind go to [their GitHub repo](https://github.com/neuralmind-ai/portuguese-bert).
- **model = "neuralmindlarge"**: Download a .zip file containing large BERT model (PyTorch), trained by NeuralMind and unzip it. For more informations about BERT models made by NeuralMind go to [their GitHub repo](https://github.com/neuralmind-ai/portuguese-bert).
**output:**
- True if download of some model was made and False otherwise.
#### 2.2.1\. `extract_features_bert(path_model, path_tokenizer, data, gpu=True)`
Function for extracting features with the BERT model (This function is not accessed through the package installation, but you can find it [here](https://github.com/felipemaiapolo/legalnlp/blob/main/demo/BERT/extract_features_bert.ipynb)).
**Input:**
- *path_model*, **str**. Must contain the path of the pre-trained model;
- *path_tokenizer*, **str**. Must contain the path of tokenizer;
- *data*, **list**. Must contain a list of texts that will be extracted features;
- *gpu*, **bool**, default=**True**. If gpu==False, the GPU will not be used in the model application (we recommend feature extraction to be done using Google Colab).
**Output:**
- **DataFrame** with features extracted by BERT model.
<a name="3"></a>
## 3\. Model Languages
<a name="3.1"></a>
### 3.1\. Phraser
Phraser is a statistical method proposed in the natural language processing
literature [1] for identifying which words when they appear
together, can be considered as unique tokens. This method application is able to
identify the relevance of the occurrence of a bigram against the occurrence of the
words that make it up separately. Thus, we can identify that a bigram like "São
Paulo" should be treated as a single token, for example. If the method is applied
a second time in sequence, we can check which are the relevant trigrams and
quadrigrams. Since the two applications should be done with different Phraser
models, it can be the case that the second application identifies bigrams that were
not identified by the first model.
This model is compatible with the `clean` function, but it is not necessary to use it before. Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/phrases.html) for more details. Preferably use Gensim version 3.8.3.
#### Using *Phraser*
Installing Gensim
```python
!pip install gensim=='3.8.3'
```
Importing package and loading our two Phraser models.
```python
#Importing packages
from gensim.models.phrases import Phraser
#Loading two Phraser models
phraser1=Phraser.load('models_phraser/phraser1')
phraser2=Phraser.load('models_phraser/phraser2')
```
Applying Phraser once and twice to check output
```python
txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios'
tokens=txt.split()
print('Clean Text: "'+' '.join(tokens)+'"')
print('\nApplying Phraser 1x: "'+' '.join(phraser1[tokens])+'"')
print('\nApplying Phraser 2x: "'+' '.join(phraser2[phraser1[tokens]])+'"')
```
Clean Text: "direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios"
Applying Phraser 1x: "direito do consumidor origem : bangu regional xxix juizado_especial civel_ação : [processo] - - recte : fundo de investimento em direitos_creditórios"
Applying Phraser 2x: "direito do consumidor origem : bangu_regional xxix juizado_especial_civel_ação : [processo] - - recte : fundo de investimento em direitos_creditórios"
<a name="3.2"></a>
### 3.2\. Word2Vec/Doc2Vec
Our first models for generating vector representation for tokens and
texts (embeddings) are variations of the Word2Vec [1,
2] and Doc2Vec [3] methods. In short, the
Word2Vec methods generate embeddings for tokens5 and that somehow capture
the meaning of the various textual elements, based on the contexts in which these
elements appear. Doc2Vec methods are extensions/modifications of Word2Vec
for generating whole text representations.
The Word2Vec and Doc2Vec methods are presented together in this section because they were trained together using the Gensim package. Both models are compatible with the `clean` function, but it is not necessary to use it before. Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/doc2vec.html) for more details. Preferably use Gensim version 3.8.3.
Below we have a summary table with some important information about the trained models:
| Filenames | Doc2Vec | Word2Vec | Size | Windows
|:-------------------:|:--------------:|:--------------:|:--------------:|:--------------:|
| ```w2v_d2v_dm*``` | Distributed Memory (DM) | Continuous Bag-of-Words (CBOW) | 100, 200, 300 | 15
| ```w2v_d2v_dbow*``` | Distributed Bag-of-Words (DBOW) | Skip-Gram (SG) | 100, 200, 300 | 15
#### Using *Word2Vec*
Installing Gensim
```python
!pip install gensim=='3.8.3'
```
Loading W2V (all the files for the specific model should be in the same folder)
```python
from gensim.models import KeyedVectors
#Loading a W2V model
w2v=KeyedVectors.load('models_w2v_d2v/w2v_d2v_dm_size_100_window_15_epochs_20')
w2v=w2v.wv
```
Viewing the first 10 entries of 'juiz' vector
```python
w2v['juiz'][:10]
```
array([ 6.570131 , -1.262787 , 5.156106 , -8.943866 , -5.884408 ,
-7.717058 , 1.8819941 , -8.02803 , -0.66901577, 6.7223144 ],
dtype=float32)
Viewing closest tokens to 'juiz'
```python
w2v.most_similar('juiz')
```
[('juíza', 0.8210258483886719),
('juiza', 0.7306275367736816),
('juíz', 0.691645085811615),
('juízo', 0.6605231165885925),
('magistrado', 0.6213295459747314),
('mmª_juíza', 0.5510469675064087),
('juizo', 0.5494943261146545),
('desembargador', 0.5313084721565247),
('mmjuiz', 0.5277603268623352),
('fabíola_melo_feijão_juíza', 0.5043971538543701)]
#### Using *Doc2Vec*
Installing Gensim
```python
!pip install gensim=='3.8.3'
```
Loading D2V (all the files for the specific model should be in the same folder)
```python
from gensim.models import Doc2Vec
#Loading a D2V model
d2v=Doc2Vec.load('models_w2v_d2v/w2v_d2v_dm_size_100_window_15_epochs_20')
```
Inferring vector for a text
```python
txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios'
tokens=txt.split()
txt_vec=d2v.infer_vector(tokens, epochs=20)
txt_vec[:10]
```
array([ 0.02626514, -0.3876521 , -0.24873355, -0.0318402 , 0.3343679 ,
-0.21307918, 0.07193747, 0.02030687, 0.407305 , 0.20065512],
dtype=float32)
<a name="3.3"></a>
### 3.3\. FastText
The FastText [4] methods, like Word2Vec, form a class of
models for creating vector representations (embeddings) for tokens. Unlike
Word2Vec, which disregards the morphology of the tokens and allocates a
different vector for each one of them, the FastText methods consider that each one
of the tokens is formed by n-grams of characters or substrings. In this way, the
representation of tokens which do not appear in the training set can be inferred
from the representation of substrings. Also, rare tokens can have more robust
representations than those returned by the Word2Vec methods.
Models are compatible with the `clean` function, but it is not necessary to use it. Remember to at least make all letters lowercase. Please check our paper or the [Gensim page](https://radimrehurek.com/gensim/models/fasttext.html) for more details. Preferably use Gensim version 4.0.1.
Below we have a summary table with some important information about the trained models:
| Filenames | FastText | Sizes | Windows
|:-------------------:|:--------------:|:--------------:|:--------------:|
| ```fasttext_cbow*``` | Continuous Bag-of-Words (CBOW) | 100, 200, 300 | 15
| ```fasttext_sg*``` | Skip-Gram (SG) | 100, 200, 300 | 15
#### Using *FastText*
installing Gensim
```python
!pip install gensim=='4.0.1'
```
Loading FastText (all the files for the specific model should be in the same folder)
```python
from gensim.models import FastText
#Loading a FastText model
fast=FastText.load('models_fasttext/fasttext_sg_size_100_window_15_epochs_20')
fast=fast.wv
```
Viewing the first 10 entries of 'juiz' vector
```python
fast['juiz'][:10]
```
array([ 0.46769685, 0.62529474, 0.08549586, 0.09621219, -0.09998254,
-0.07897531, 0.32838237, -0.33229044, -0.05959201, -0.5865443 ],
dtype=float32)
Viewing the first 10 vector entries of a token that was not in our vocabulary
```python
fast['juizasjashdkjhaskda'][:10]
```
array([ 0.02795791, 0.1361525 , 0.1340836 , -0.36824217, -0.11549155,
-0.11167661, 0.32045627, -0.33701468, -0.05198409, -0.05513595],
dtype=float32)
<a name="3.4"></a>
### 3.4\. BERTikal
We call BERTikal our BERT-Base model (cased) [5] for Brazilian legal language. BERT models are models based on neural network architectures called Transformers. BERT models are trained with large sets of texts using the self-supervised paradigm, which is basically solving unsupervised problems using supervised techniques. A pre-trained BERT model is capable of generating representations for entire texts and can be adapted for a supervised task, e.g., text classification or question answering, using the fine-tuning mechanism.
BERTikal was trained using the Python package [Transformers](https://huggingface.co/transformers/}) in its 4.2.2 version and its checkpoint made available by us is compatible with [PyTorch](https://pytorch.org/) 1.9.0. Although we expose the versions of both packages, more current versions can be used in applications of the model, as long as there are no relevant version conflicts.
Our model was trained from the checkpoint made available in [Neuralmind’s Github repository](https://github.com/neuralmind-ai/portuguese-bert) by the authors of recent research [6].
#### Using *BERTikal*
Installing Torch e Transformers
```python
!pip install torch=='1.8.1' transformers=='4.2.2'
```
Loading BERT (all the files for the specific model should be in the same folder)
```python
from transformers import BertModel, BertTokenizer
bert_tokenizer = BertTokenizer.from_pretrained('model_bertikal/', do_lower_case=False)
bert_model = BertModel.from_pretrained('model_bertikal/')
```
--------------
<a name="4"></a>
## 4\. Demonstrations
For a better understanding of the application of these models, below are the links to notebooks where we apply them to a legal dataset using various classification models such as Logistic Regression and CatBoost:
- **BERT notebook** :
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/BERT/BERT_TUTORIAL.ipynb)
- **Word2Vec notebook** :
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Word2Vec/Word2Vec_TUTORIAL.ipynb)
- **Doc2Vec notebook** :
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Doc2Vec/Doc2Vec_TUTORIAL.ipynb)
--------------
<a name="5"></a>
## 5\. References
[1] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119.
[2] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.
[3] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196.
PMLR.
[4] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146.
[5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.
[6] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT
models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent
Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23
|