samsja's picture
Update README.md
489bf80 verified
|
raw
history blame
3.11 kB
metadata
license: apache-2.0
datasets:
  - PrimeIntellect/fineweb-edu
  - PrimeIntellect/fineweb
  - PrimeIntellect/StackV1-popular
  - mlfoundations/dclm-baseline-1.0-parquet
  - open-web-math/open-web-math
language:
  - en
pipeline_tag: text-generation

INTELLECT-1-step-88000

This is an intermediate checkpoint of INTELLECT-1. You can find the final version as well as the instruct one

Model Overview

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

INTELLECT-1 was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute. The training code utilizes the prime framework, a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers. The key abstraction that allows dynamic scaling is the ElasticDeviceMesh which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead.

For more detailed technical insights, please refer to our technical paper.

Model Details

  • Model Contributors: samsja, Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, waiting_, toptickcrypto, sto, Johannes, washout_segment_0b, klee
  • Release Date: 29 Nov 2024
  • Model License: Apache 2.0

Technical Specifications

Parameter Value
Parameter Size 10B
Number of Layers 42
Number of Attention Heads 32
Hidden Size 4096
Context Length 8192
Vocabulary Size 128256

Citations

If you use this model in your research, please cite it as follows:

@article{}