File size: 1,797 Bytes
85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 85bfdae 09c3d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from typing import Dict, Any
from transformers import pipeline
import holidays
import PIL.Image
import io
import pytesseract
class PreTrainedPipeline():
def __init__(self, model_path="PrimWong/layout_qa_hparam_tuning"):
# Initializing the document-question-answering pipeline with the specified model
self.pipeline = pipeline("document-question-answering", model=model_path)
self.holidays = holidays.US()
def __call__(self, data: Dict[str, Any]) -> str:
"""
Process input data for document question answering with optional holiday checking.
Args:
data (Dict[str, Any]): Input data containing an 'inputs' field with 'image' and 'question',
and optionally a 'date' field.
Returns:
str: The answer to the question or a holiday message if applicable.
"""
inputs = data.get('inputs', {})
date = data.get("date")
# Check if date is provided and if it's a holiday
if date and date in self.holidays:
return "Today is a holiday!"
# Process the image and question for document question answering
image_path = inputs.get("image")
question = inputs.get("question")
# Load and process an image
image = PIL.Image.open(image_path)
image_text = pytesseract.image_to_string(image) # Use OCR to extract text
# Run prediction (Note: this now uses the extracted text, not the image directly)
prediction = self.pipeline(question=question, context=image_text)
return prediction["answer"] # Adjust based on actual output format of the model
# Note: This script assumes the use of pytesseract for OCR to process images. Ensure pytesseract is configured properly.
|