File size: 28,812 Bytes
f653c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "809c06bc",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import spacy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e8b0dce4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import en_ner_bc5cdr_md\n",
    "import en_core_med7_lg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "84d4467f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# To install spaCy's pre-trained model en_ner_bc5cdr_md, en_core_med7_lg use the link below. You can also install the transformer\n",
    "\n",
    "# !pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.1/en_ner_bc5cdr_md-0.5.1.tar.gz\n",
    "# !pip install https://huggingface.co/kormilitzin/en_core_med7_trf/resolve/main/en_core_med7_trf-any-py3-none-any.whl --user\n",
    "# !pip install https://huggingface.co/kormilitzin/en_core_med7_lg/resolve/main/en_core_med7_lg-any-py3-none-any.whl --user"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "1ee710ca",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>description</th>\n",
       "      <th>medical_specialty</th>\n",
       "      <th>sample_name</th>\n",
       "      <th>transcription</th>\n",
       "      <th>keywords</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>A 23-year-old white female presents with comp...</td>\n",
       "      <td>Allergy / Immunology</td>\n",
       "      <td>Allergic Rhinitis</td>\n",
       "      <td>SUBJECTIVE:,  This 23-year-old white female pr...</td>\n",
       "      <td>allergy / immunology, allergic rhinitis, aller...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Consult for laparoscopic gastric bypass.</td>\n",
       "      <td>Bariatrics</td>\n",
       "      <td>Laparoscopic Gastric Bypass Consult - 2</td>\n",
       "      <td>PAST MEDICAL HISTORY:, He has difficulty climb...</td>\n",
       "      <td>bariatrics, laparoscopic gastric bypass, weigh...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Consult for laparoscopic gastric bypass.</td>\n",
       "      <td>Bariatrics</td>\n",
       "      <td>Laparoscopic Gastric Bypass Consult - 1</td>\n",
       "      <td>HISTORY OF PRESENT ILLNESS: , I have seen ABC ...</td>\n",
       "      <td>bariatrics, laparoscopic gastric bypass, heart...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2-D M-Mode. Doppler.</td>\n",
       "      <td>Cardiovascular / Pulmonary</td>\n",
       "      <td>2-D Echocardiogram - 1</td>\n",
       "      <td>2-D M-MODE: , ,1.  Left atrial enlargement wit...</td>\n",
       "      <td>cardiovascular / pulmonary, 2-d m-mode, dopple...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2-D Echocardiogram</td>\n",
       "      <td>Cardiovascular / Pulmonary</td>\n",
       "      <td>2-D Echocardiogram - 2</td>\n",
       "      <td>1.  The left ventricular cavity size and wall ...</td>\n",
       "      <td>cardiovascular / pulmonary, 2-d, doppler, echo...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                         description  \\\n",
       "0   A 23-year-old white female presents with comp...   \n",
       "1           Consult for laparoscopic gastric bypass.   \n",
       "2           Consult for laparoscopic gastric bypass.   \n",
       "3                             2-D M-Mode. Doppler.     \n",
       "4                                 2-D Echocardiogram   \n",
       "\n",
       "             medical_specialty                                sample_name  \\\n",
       "0         Allergy / Immunology                         Allergic Rhinitis    \n",
       "1                   Bariatrics   Laparoscopic Gastric Bypass Consult - 2    \n",
       "2                   Bariatrics   Laparoscopic Gastric Bypass Consult - 1    \n",
       "3   Cardiovascular / Pulmonary                    2-D Echocardiogram - 1    \n",
       "4   Cardiovascular / Pulmonary                    2-D Echocardiogram - 2    \n",
       "\n",
       "                                       transcription  \\\n",
       "0  SUBJECTIVE:,  This 23-year-old white female pr...   \n",
       "1  PAST MEDICAL HISTORY:, He has difficulty climb...   \n",
       "2  HISTORY OF PRESENT ILLNESS: , I have seen ABC ...   \n",
       "3  2-D M-MODE: , ,1.  Left atrial enlargement wit...   \n",
       "4  1.  The left ventricular cavity size and wall ...   \n",
       "\n",
       "                                            keywords  \n",
       "0  allergy / immunology, allergic rhinitis, aller...  \n",
       "1  bariatrics, laparoscopic gastric bypass, weigh...  \n",
       "2  bariatrics, laparoscopic gastric bypass, heart...  \n",
       "3  cardiovascular / pulmonary, 2-d m-mode, dopple...  \n",
       "4  cardiovascular / pulmonary, 2-d, doppler, echo...  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "med = pd.read_csv('mtsamples.csv', index_col=0)\n",
    "med.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "453c00da",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "description             0\n",
       "medical_specialty       0\n",
       "sample_name             0\n",
       "transcription          33\n",
       "keywords             1068\n",
       "dtype: int64"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "med.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ac84c247",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(4999, 5)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "med.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "bc3d4bd7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "Int64Index: 4999 entries, 0 to 4998\n",
      "Data columns (total 5 columns):\n",
      " #   Column             Non-Null Count  Dtype \n",
      "---  ------             --------------  ----- \n",
      " 0   description        4999 non-null   object\n",
      " 1   medical_specialty  4999 non-null   object\n",
      " 2   sample_name        4999 non-null   object\n",
      " 3   transcription      4966 non-null   object\n",
      " 4   keywords           3931 non-null   object\n",
      "dtypes: object(5)\n",
      "memory usage: 234.3+ KB\n"
     ]
    }
   ],
   "source": [
    "med.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "79682feb",
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "\n",
    "med['transcription'] = med['transcription'].astype('str')\n",
    "med['transcription'] = med['transcription'].apply(lambda x: re.sub('(\\.,)', \". \", x))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "6121d1e4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Document:\n",
      "SUBJECTIVE:,  This 23-year-old white female presents with complaint of allergies.  She used to have allergies when she lived in Seattle but she thinks they are worse here.  In the past, she has tried Claritin, and Zyrtec.  Both worked for short time but then seemed to lose effectiveness.  She has used Allegra also.  She used that last summer and she began using it again two weeks ago.  It does not appear to be working very well.  She has used over-the-counter sprays but no prescription nasal sprays.  She does have asthma but doest not require daily medication for this and does not think it is flaring up. MEDICATIONS: , Her only medication currently is Ortho Tri-Cyclen and the Allegra. ALLERGIES: , She has no known medicine allergies. OBJECTIVE:,Vitals:  Weight was 130 pounds and blood pressure 124/78. HEENT:  Her throat was mildly erythematous without exudate.  Nasal mucosa was erythematous and swollen.  Only clear drainage was seen.  TMs were clear. Neck:  Supple without adenopathy. Lungs:  Clear. ASSESSMENT:,  Allergic rhinitis. PLAN:,1.  She will try Zyrtec instead of Allegra again.  Another option will be to use loratadine.  She does not think she has prescription coverage so that might be cheaper. 2.  Samples of Nasonex two sprays in each nostril given for three weeks.  A prescription was written as well.\n",
      "Annotations:\n",
      "{'entities': [(200, 208, 'DRUG'), (214, 220, 'DRUG'), (549, 554, 'FREQUENCY'), (1070, 1076, 'DRUG'), (1134, 1144, 'DRUG'), (1237, 1244, 'DRUG'), (1245, 1248, 'DOSAGE'), (1249, 1255, 'FORM'), (1259, 1263, 'DOSAGE'), (1278, 1293, 'DURATION')]}\n"
     ]
    }
   ],
   "source": [
    "nlp = spacy.load(\"en_core_med7_lg\")\n",
    "\n",
    "# This function generate anotation for each entities and label\n",
    "def generate_annotation(texts):\n",
    "    annotations = []\n",
    "    for text in texts:\n",
    "        doc = nlp(text)\n",
    "        entities = []\n",
    "        for ent in doc.ents:\n",
    "            entities.append((ent.start_char, ent.end_char, ent.label_))\n",
    "        annotations.append((text, {'entities': entities}))\n",
    "    return annotations\n",
    "\n",
    "# Extract text entities and labels from the dataset (transcription)\n",
    "medical_doc = med['transcription'].tolist()\n",
    "\n",
    "# Let's generate annotations\n",
    "annotations = generate_annotation(medical_doc)\n",
    "\n",
    "# Let's print documents and annotations\n",
    "print(\"Document:\")\n",
    "print(annotations[0][0]) # first document text\n",
    "print(\"Annotations:\")\n",
    "print(annotations[0][1]) # annotation for the first document"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ac6f901",
   "metadata": {},
   "outputs": [],
   "source": [
    "#med['annotation'] = med['transcription'].apply(lambda x:generate_annotation(x))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "846fddb7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">SUBJECTIVE:,  This 23-year-old white female presents with complaint of allergies.  She used to have allergies when she lived in Seattle but she thinks they are worse here.  In the past, she has tried \n",
       "<mark class=\"entity\" style=\"background: #3cb44b; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Claritin\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DRUG</span>\n",
       "</mark>\n",
       ", and \n",
       "<mark class=\"entity\" style=\"background: #3cb44b; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Zyrtec\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DRUG</span>\n",
       "</mark>\n",
       ".  Both worked for short time but then seemed to lose effectiveness.  She has used Allegra also.  She used that last summer and she began using it again two weeks ago.  It does not appear to be working very well.  She has used over-the-counter sprays but no prescription nasal sprays.  She does have asthma but doest not require \n",
       "<mark class=\"entity\" style=\"background: #f58231; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    daily\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">FREQUENCY</span>\n",
       "</mark>\n",
       " medication for this and does not think it is flaring up. MEDICATIONS: , Her only medication currently is Ortho Tri-Cyclen and the Allegra. ALLERGIES: , She has no known medicine allergies. OBJECTIVE:,Vitals:  Weight was 130 pounds and blood pressure 124/78. HEENT:  Her throat was mildly erythematous without exudate.  Nasal mucosa was erythematous and swollen.  Only clear drainage was seen.  TMs were clear. Neck:  Supple without adenopathy. Lungs:  Clear. ASSESSMENT:,  Allergic rhinitis. PLAN:,1.  She will try \n",
       "<mark class=\"entity\" style=\"background: #3cb44b; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Zyrtec\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DRUG</span>\n",
       "</mark>\n",
       " instead of Allegra again.  Another option will be to use \n",
       "<mark class=\"entity\" style=\"background: #3cb44b; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    loratadine\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DRUG</span>\n",
       "</mark>\n",
       ".  She does not think she has prescription coverage so that might be cheaper. 2.  Samples of \n",
       "<mark class=\"entity\" style=\"background: #3cb44b; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Nasonex\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DRUG</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e6194B; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    two\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DOSAGE</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #ffd8b1; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    sprays\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">FORM</span>\n",
       "</mark>\n",
       " in \n",
       "<mark class=\"entity\" style=\"background: #e6194B; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    each\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DOSAGE</span>\n",
       "</mark>\n",
       " nostril given \n",
       "<mark class=\"entity\" style=\"background: #ffe119; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    for three weeks\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DURATION</span>\n",
       "</mark>\n",
       ".  A prescription was written as well.</div></span>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "[('Claritin', 'DRUG'),\n",
       " ('Zyrtec', 'DRUG'),\n",
       " ('daily', 'FREQUENCY'),\n",
       " ('Zyrtec', 'DRUG'),\n",
       " ('loratadine', 'DRUG'),\n",
       " ('Nasonex', 'DRUG'),\n",
       " ('two', 'DOSAGE'),\n",
       " ('sprays', 'FORM'),\n",
       " ('each', 'DOSAGE'),\n",
       " ('for three weeks', 'DURATION')]"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from spacy import displacy\n",
    "nlp = spacy.load(\"en_core_med7_lg\")\n",
    "\n",
    "# Create distict colours for labels\n",
    "\n",
    "col_dict = {}\n",
    "s_colours = ['#e6194B', '#3cb44b', '#ffe119', '#ffd8b1', '#f58231', '#f032e6', '#42d4f4']\n",
    "for label, colour in zip(nlp.pipe_labels['ner'], s_colours):\n",
    "    col_dict[label] = colour\n",
    "\n",
    "options = {'ents': nlp.pipe_labels['ner'], 'colors':col_dict}\n",
    "\n",
    "transcription = med['transcription'][0]\n",
    "doc = nlp(transcription)\n",
    "\n",
    "spacy.displacy.render(doc, style = 'ent', jupyter = True, options = options)\n",
    "\n",
    "[(ent.text, ent.label_) for ent in doc.ents]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "44ec9bdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "med_adj = med.sample(n=111, replace = False, random_state=42)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "b38de759",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Text: snoring, Entity Type: DISEASE\n",
      "Text: pains, Entity Type: DISEASE\n",
      "Text: knee pain, Entity Type: DISEASE\n",
      "Text: pain, Entity Type: DISEASE\n",
      "Text: ankle pain, Entity Type: DISEASE\n",
      "Text: gastroesophageal reflux disease, Entity Type: DISEASE\n",
      "Text: Heart disease, Entity Type: DISEASE\n",
      "Text: stroke, Entity Type: DISEASE\n",
      "Text: diabetes, Entity Type: DISEASE\n",
      "Text: obesity, Entity Type: DISEASE\n",
      "Text: hypertension, Entity Type: DISEASE\n",
      "Text: allergic, Entity Type: DISEASE\n",
      "Text: Penicillin, Entity Type: CHEMICAL\n",
      "Text: chest pain, Entity Type: DISEASE\n",
      "Text: coronary artery disease, Entity Type: DISEASE\n",
      "Text: congestive heart failure, Entity Type: DISEASE\n",
      "Text: arrhythmia, Entity Type: DISEASE\n",
      "Text: atrial fibrillation, Entity Type: DISEASE\n",
      "Text: cholesterol, Entity Type: CHEMICAL\n",
      "Text: pulmonary embolism, Entity Type: DISEASE\n",
      "Text: CVA, Entity Type: CHEMICAL\n",
      "Text: venous insufficiency, Entity Type: DISEASE\n",
      "Text: thrombophlebitis, Entity Type: DISEASE\n",
      "Text: asthma, Entity Type: DISEASE\n",
      "Text: shortness of breath, Entity Type: DISEASE\n",
      "Text: COPD, Entity Type: DISEASE\n",
      "Text: emphysema, Entity Type: DISEASE\n",
      "Text: sleep apnea, Entity Type: DISEASE\n",
      "Text: diabetes, Entity Type: DISEASE\n",
      "Text: osteoarthritis, Entity Type: DISEASE\n",
      "Text: rheumatoid arthritis, Entity Type: DISEASE\n",
      "Text: hiatal hernia, Entity Type: DISEASE\n",
      "Text: peptic ulcer disease, Entity Type: DISEASE\n",
      "Text: gallstones, Entity Type: DISEASE\n",
      "Text: pancreatitis, Entity Type: DISEASE\n",
      "Text: fatty liver, Entity Type: DISEASE\n",
      "Text: hepatitis, Entity Type: DISEASE\n",
      "Text: hemorrhoids, Entity Type: DISEASE\n",
      "Text: bleeding, Entity Type: DISEASE\n",
      "Text: polyps, Entity Type: DISEASE\n",
      "Text: incontinence, Entity Type: DISEASE\n",
      "Text: urinary stress incontinence, Entity Type: DISEASE\n",
      "Text: cancer, Entity Type: DISEASE\n",
      "Text: cellulitis, Entity Type: DISEASE\n",
      "Text: meningitis, Entity Type: DISEASE\n",
      "Text: encephalitis, Entity Type: DISEASE\n"
     ]
    }
   ],
   "source": [
    "nlp = spacy.load(\"en_ner_bc5cdr_md\")\n",
    "\n",
    "transcription = med['transcription'].iloc[1]\n",
    "doc= nlp(transcription)\n",
    "\n",
    "# Let's extract and print all the entity\n",
    "for ent in doc.ents:\n",
    "    print(f\"Text: {ent.text}, Entity Type: {ent.label_}\")\n",
    "    #print(f\"Text: {ent.text}, Start: {ent.start_char}, End: {ent.end_char}, Entity Type: {ent.label_}\") you can also use this"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "aad31e23",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "DRUG_DOSE 514 517 Diastat 20 mg\n",
      "DRUG_DOSE 518 521 Topamax 25 mg\n",
      "DRUG_DOSE 532 535 Tranxene 15 mg\n",
      "DRUG_DOSE 538 541 Depakote 125 mg\n",
      "DRUG_DOSE 729 732 Depacon 250 mg\n",
      "DRUG_DOSE 266 269 Pepcid 40 mg\n",
      "DRUG_DOSE 109 112 furosemide 40 mg\n",
      "DRUG_DOSE 897 900 diltiazem 120 mg\n",
      "DRUG_DOSE 433 436 Aspirin 325 mg\n",
      "DRUG_DOSE 443 446 Lisinopril 40 mg\n",
      "DRUG_DOSE 453 456 Felodipine 10 mg\n",
      "DRUG_DOSE 465 468 Con 20 mEq\n",
      "DRUG_DOSE 475 478 Omeprazole 20 mg\n",
      "DRUG_DOSE 488 491 MiraLax 17 g\n",
      "DRUG_DOSE 498 501 Lasix 20 mg\n",
      "DRUG_DOSE 282 285 Omeprazole 40 mg\n",
      "DRUG_DOSE 25 28 Prozac 20 mg\n",
      "DRUG_DOSE 274 277 Rocephin 250 mg\n",
      "DRUG_DOSE 278 281 azithromycin 1000 mg\n",
      "DRUG_DOSE 504 507 Coumadin 5 mg\n",
      "DRUG_DOSE 524 527 Aspirin 81 mg\n",
      "DRUG_DOSE 533 536 Hydrochlorothiazide 25 mg\n",
      "DRUG_DOSE 542 545 Plendil 10 mg\n",
      "DRUG_DOSE 550 553 Lipitor 40 mg\n",
      "DRUG_DOSE 955 958 dexamethasone 4 mg\n",
      "DRUG_DOSE 286 289 Plavix 75 mg\n",
      "DRUG_DOSE 294 297 metoprolol 25 mg\n",
      "DRUG_DOSE 302 305 Flomax 0.4 mg\n",
      "DRUG_DOSE 310 313 Zocor 20 mg\n",
      "DRUG_DOSE 327 330 lisinopril 10 mg\n",
      "DRUG_DOSE 78 81 iCAD Second Look\n",
      "DRUG_DOSE 334 337 iCAD Second Look\n",
      "DRUG_DOSE 27 30 fentanyl 25 mcg\n",
      "DRUG_DOSE 100 103 Xylocaine 1%\n",
      "DRUG_DOSE 66 69 Lexiscan 0.4 mg\n",
      "DRUG_DOSE 187 190 lidocaine 2%\n",
      "DRUG_DOSE 194 197 Marcaine 1.7 mL\n",
      "DRUG_DOSE 258 261 Plaquenil 200 mg\n",
      "DRUG_DOSE 268 271 Fosamax 170 mg\n",
      "DRUG_DOSE 290 293 acid 1 mg\n",
      "DRUG_DOSE 299 302 Trilisate 1000 mg\n",
      "DRUG_DOSE 320 323 Hydrochlorothiazide 15 mg\n",
      "DRUG_DOSE 330 333 Lopressor 50 mg\n",
      "DRUG_DOSE 344 347 Trazodone 100 mg\n",
      "DRUG_DOSE 353 356 Prempro 0.625 mg\n",
      "DRUG_DOSE 362 365 Aspirin 325 mg\n",
      "DRUG_DOSE 372 375 Lipitor 10 mg\n",
      "DRUG_DOSE 381 384 Pepcid 20 mg\n",
      "DRUG_DOSE 391 394 Reglan 10 mg\n",
      "DRUG_DOSE 403 406 Celexa 20 mg\n",
      "DRUG_DOSE 721 724 Azithromycin 5-\n",
      "DRUG_DOSE 746 749 Atarax 25 mg\n",
      "DRUG_DOSE 390 393 sotalol 80 mg\n",
      "DRUG_DOSE 398 401 metoprolol 50 mg\n",
      "DRUG_DOSE 414 417 digoxin 0.125 mg\n",
      "DRUG_DOSE 504 507 cephalexin 500 mg\n",
      "DRUG_DOSE 56 59 Versed 3,\n",
      "DRUG_DOSE 59 62 Demerol 25 and\n",
      "DRUG_DOSE 230 233 aspirin one tablet\n",
      "DRUG_DOSE 249 252 Warfarin 2.5 mg\n",
      "DRUG_DOSE 498 501 Synthroid 0.5 mg\n",
      "DRUG_DOSE 507 510 Plavix 75 mg\n",
      "DRUG_DOSE 515 518 acid 1 mg\n",
      "DRUG_DOSE 522 525 Diovan 80 mg\n",
      "DRUG_DOSE 529 532 Renagel 2 tablets\n",
      "DRUG_DOSE 540 543 Lasix 40 mg\n",
      "DRUG_DOSE 552 555 lovastatin 20 mg\n",
      "DRUG_DOSE 559 562 Coreg 3.125 mg\n",
      "DRUG_DOSE 577 580 Phenergan 25 mg\n",
      "DRUG_DOSE 589 592 Pepcid 20 mg\n",
      "DRUG_DOSE 596 599 Vicodin 1 tablet\n",
      "DRUG_DOSE 609 612 Levaquin 250 mg\n",
      "DRUG_DOSE 89 92 Coreg 6.25 mg\n",
      "DRUG_DOSE 132 135 Coreg 6.25 mg\n",
      "DRUG_DOSE 140 143 Simvastatin 40 mg\n",
      "DRUG_DOSE 148 151 Lisinopril 5 mg\n",
      "DRUG_DOSE 156 159 Protonix 40 mg\n",
      "DRUG_DOSE 163 166 Aspirin 160 mg\n",
      "DRUG_DOSE 172 175 Lasix 20 mg\n",
      "DRUG_DOSE 195 198 Advair 500/50 puff\n"
     ]
    }
   ],
   "source": [
    "from  spacy.matcher import Matcher\n",
    "\n",
    "# Let's load the model\n",
    "nlp = spacy.load(\"en_core_med7_lg\")\n",
    "\n",
    "patterns = [\n",
    "    [{\"ENT_TYPE\": \"DRUG\"}, {\"LIKE_NUM\": True}, {\"IS_ASCII\": True}],\n",
    "    [{\"LOWER\": {\"IN\": [\"mg\", \"g\", \"ml\"]}}, {\"ENT_TYPE\": \"DRUG\"}],\n",
    "    [{\"ENT_TYPE\": \"DRUG\"}, {\"IS_DIGIT\": True, \"OP\": \"?\"}, {\"LOWER\": {\"IN\": [\"mg\", \"g\", \"ml\"]}}]\n",
    "]\n",
    "\n",
    "matcher = Matcher(nlp.vocab)\n",
    "matcher.add(\"DRUG_DOSE\", patterns)\n",
    "\n",
    "for transcription in  med_adj['transcription']:\n",
    "    doc = nlp(transcription)\n",
    "    matches = matcher(doc)\n",
    "    for match_id, start, end in matches:\n",
    "        string_id = nlp.vocab.strings[match_id]\n",
    "        span = doc[start:end]\n",
    "        print(string_id, start, end, span.text)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "815b1041",
   "metadata": {},
   "outputs": [],
   "source": [
    "med_adj = med.sample(n=3, replace = False, random_state=42)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "824246e5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's load our pretrained spacy model\n",
    "\n",
    "nlp = spacy.load(\"en_core_med7_lg\")\n",
    "\n",
    "# this function will extract relevant entities and labels needed from medical transcription \n",
    "\n",
    "def extract_keywords(text):\n",
    "    doc = nlp(text)\n",
    "    entities = []\n",
    "    entities = [(ent.text, ent.label_) for ent in doc.ents]\n",
    "    return entities\n",
    "\n",
    "# Lets define our categories\n",
    "surgery_keywords = [\"surgery\", \"operation\", \"procedure\", \"acute Cholangitis\", \"surgisis\", \"appendicitis\"]\n",
    "cardio_pul_keywords = [\"heart\", \"cardiovascular\", \"pulmonary\", \"lungs\"]\n",
    "orthopaedic_keywords = [\"orthopaedic\", \"bone\", \"joint\", \"fracture\"]\n",
    "neurology_keywords = [\"neurology\", \"nervours system\", \"brain\", \"nerve\"]\n",
    "general_med_keywords = [\"patient\", \"complaining\", \"history\", \"medical\"]\n",
    "    \n",
    "# This will process each medical description and check for relevant keywords\n",
    "medical_doc = med['transcription']\n",
    "for transcription in medical_doc:\n",
    "    entities = extract_keywords(transcription.lower())\n",
    "    \n",
    "    is_surgery = any(keyword in transcription.lower() for keyword in surgery_keywords)\n",
    "    is_cardio_pul = any(keyword in transcription.lower() for keyword in cardio_pul_keywords)\n",
    "    is_orthopaedic = any(keyword in transcription.lower() for keyword in orthopaedic_keywords)\n",
    "    is_neurology = any(keyword in transcription.lower() for keyword in neurology_keywords)\n",
    "    is_general_med = any(keyword in transcription.lower() for keyword in general_med_keywords)\n",
    "    \n",
    "    print(\"Transcription:\", transcription)\n",
    "    print(\"Entities:\", entities)\n",
    "    print(\"Is Surgery:\", is_surgery)\n",
    "    print(\"Is Cardio Pulmonary:\", is_cardio_pul)\n",
    "    print(\"Orthopaedic:\", is_orthopaedic)\n",
    "    print(\"Neurology:\", is_neurology)\n",
    "    print(\"General Medicine:\", is_general_med)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dcdbcd44",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}