Custom-KoLLM-13B-v3 / README.md
kyujinpy's picture
Upload README.md
65f37e4
|
raw
history blame
1.47 kB
---
language:
- ko
datasets:
- kyujinpy/Ko-various-dataset
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
# **⭐My custom LLM 13B⭐**
## Model Details
**Model Developers**
- Kyujin Han (kyujinpy)
**Model Architecture**
- My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Base Model**
- [beomi/llama-2-koen-13b](https://huggingface.co/beomi/llama-2-koen-13b)
**Training Dataset**
- [kyujinpy/Ko-various-dataset](https://huggingface.co/datasets/kyujinpy/Ko-various-dataset).
---
# Model comparisons
> Ko-LLM leaderboard(11/27; [link](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard))
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| ⭐My custom LLM 13B-v1⭐ | 50.19 | 45.99 | 56.93 | 41.78 | 41.66 | **64.58** |
| ⭐My custom LLM 13B v2⭐ | 48.28 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 |
| ⭐My custom LLM 13B v3⭐ | NaN | NaN | NaN | NaN | NaN | NaN |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/Custom-KoLLM-13B-v3"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---