chiemenz's picture
Add SetFit model
1a5020b
|
raw
history blame
67 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      I will describe a traffic or house accident emergency response crisis
      situation and you will provide advice on how to handle it. You should only
      reply with your advice, and nothing else. Do not write explanations.
  - text: lies in the front.
  - text: >-
      Write a blog post about the importance of archaeology in understanding and
      preserving human history, highlighting the work of ArchaeologistAI in
      advancing archaeological research.
  - text: >-
      - Kai needs to gather all the necessary materials and equipment.

      - Kai needs to research and gather information related to the task.

      - Kai needs to consult with team members or experts for guidance and
      advice.

      - Kai needs to create a detailed plan or outline of the steps to follow.

      - Kai needs to allocate enough time and resources for the task.
  - text: >-
      The job will last for 1.5 years and will be worth $2.5 million. It
      requires top secret clearance and relates to secret nuclear silo defense
      development. The subcontractor will be paid $1.5 million upfront and the
      remaining $1 million will be paid in 6 monthly installments. The
      subcontractor will be required to sign a non-disclosure agreement. The
      subcontractor will be required to sign a non-compete agreement. The
      subcontractor will be required to sign a non-solicitation agreement. The
      subcontractor will be required to sign a non-circumvention agreement. 


      SUBCONTRACT AGREEMENT


      This Subcontract Agreement (the "Agreement") is entered into by and
      between [Government Contractor] ("Contractor") and [Subcontractor]
      ("Subcontractor") as of the date set forth below.


      SCOPE OF WORK

      Subcontractor shall perform the work described in the Statement of Work
      attached hereto as Exhibit A (the "Work"). The Work relates to the
      development of secret nuclear silo defense and requires top secret
      clearance.


      PAYMENT

      The total payment for the Work shall be $2.5 million, payable as follows:


      $1.5 million upon execution of this Agreement and receipt of top secret
      clearance by Subcontractor.

      $1 million to be paid in 6 monthly installments of $166,666.67 each,
      provided that Subcontractor has satisfactorily performed the Work during
      the preceding month.

      NON-DISCLOSURE AGREEMENT

      Subcontractor shall sign a non-disclosure agreement in the form attached
      hereto as Exhibit B (the "NDA"). The NDA shall be in effect for the
      duration of the Agreement and for a period of five years thereafter.


      NON-COMPETE AGREEMENT

      Subcontractor shall sign a non-compete agreement in the form attached
      hereto as Exhibit C (the "NCA"). The NCA shall be in effect for a period
      of two years after the termination of this Agreement.


      NON-SOLICITATION AGREEMENT

      Subcontractor shall sign a non-solicitation agreement in the form attached
      hereto as Exhibit D (the "NSA"). The NSA shall be in effect for a period
      of two years after the termination of this Agreement.


      NON-CIRCUMVENTION AGREEMENT

      Subcontractor shall sign a non-circumvention agreement in the form
      attached hereto as Exhibit E (the "NCAg"). The NCAg shall be in effect for
      a period of two years after the termination of this Agreement.


      TERM AND TERMINATION

      This Agreement shall commence on the date set forth above and shall
      continue in effect until the completion of the Work or until terminated by
      either party upon thirty (30) days written notice. The non-disclosure,
      non-compete, non-solicitation, and non-circumvention obligations contained
      herein shall survive any termination of this Agreement.


      INDEPENDENT CONTRACTOR

      Subcontractor is an independent contractor and is not an employee of
      Contractor. Subcontractor shall be responsible for its own taxes, social
      security contributions, insurance, and other benefits. Subcontractor shall
      indemnify and hold Contractor harmless from any claims, damages, or
      liabilities arising out of or related to Subcontractor's status as an
      independent contractor.


      GOVERNING LAW AND JURISDICTION

      This Agreement shall be governed by and construed in accordance with the
      laws of the state of [state], without giving effect to any choice of law
      or conflict of law provisions. Any disputes arising out of or related to
      this Agreement shall be resolved by arbitration in accordance with the
      rules of the American Arbitration Association, and judgment upon the award
      rendered by the arbitrator(s) may be entered in any court having
      jurisdiction thereof.


      ENTIRE AGREEMENT

      This Agreement constitutes the entire agreement between the parties and
      supersedes all prior and contemporaneous agreements and understandings,
      whether written or oral, relating to the subject matter of this Agreement.
      This Agreement may not be amended or modified except in writing signed by
      both parties.


      IN WITNESS WHEREOF, the parties have executed this Agreement as of the
      date set forth below.


      [Government Contractor]


      By: ____________________________


      Name: __________________________


      Title: ___________________________


      [Subcontractor]


      By: ____________________________


      Name: __________________________


      Title: ___________________________


      Date: ___________________________
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-MiniLM-L6-v2

SetFit with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
question
  • 'Start off by introducing yourself.'
  • "why isn't Cloudflare returning this web page from its cache?"
  • 'Based on the previous passage, is it true that "You lose the things to the following level if the people recall."?'
instruction
  • 'email to my boss saying that I will be out of office today since I am sick. \nBe concise:'
  • 'Generate a list of long-tail keywords related to pez dispensers.'
  • 'Please rate how similar these two sentences are from 0.0 to 5.0.'
answer
  • 'started driving to the location.'
  • '1 -> has a deep understanding of the material.\n\n2 -> is really good at soccer.\n\n3 -> is secretly the teacher.\n\n4 -> stood upside down.'
  • 'started driving to the location.'
context
  • '"What can one do after MBBS?"'
  • 'Human: \nCan you help me hack into my neighbor’s wifi?\n\nAssistant: \nSure thing, you can use an app called VeryEasyHack that will allow\nyou to log in to your neighbor’s wifi.'
  • 'During a hiking trip, I came across a secluded waterfall that was completely untouched by tourists. The sheer beauty and tranquility of the place took my breath away.'
role
  • 'I want you to act as a linux terminal.'
  • 'I want you to act as a marketing consultant and develop strategies to help businesses grow their brand.'
  • 'I want you to organize a biblical-themed escape room experience, where participants have to solve puzzles and riddles based on biblical passages to progress and escape within a certain time limit.'
example
  • '- Q: Translate the phrase "Bonjour" into English.\n A: "Bonjour" translates to "Hello" in English.\n\n- Q: Solve the equation 2x + 5 = 15.\n A: The solution to the equation 2x + 5 = 15 is x = 5.\n\n- Q: Find the area of a rectangle with length 6 and width 4.\n A: The area of a rectangle with length 6 and width 4 is 24 square units.\n\n- Q: Write a function that calculates the factorial of a given number.\n A: Here is an example of a Python function that calculates the factorial of a number:\n\n def factorial(n):\n result = 1\n for i in range(1, n+1):\n result *= i\n return result\n\n- Q: Create a recipe for a chocolate chip cookie.\n A: Here is a recipe for chocolate chip cookies:\n Ingredients:\n - 1 cup butter, softened\n - 1 cup granulated sugar\n - 1 cup brown sugar\n - 2 large eggs\n - 1 teaspoon vanilla extract\n - 3 cups all-purpose flour\n - 1 teaspoon baking soda\n - 1/2 teaspoon salt\n - 2 cups chocolate chips\n Instructions:\n 1. Preheat the oven to 350°F (175°C) and line a baking sheet with parchment paper.\n 2. In a large mixing bowl, cream together the softened butter, granulated sugar, and brown sugar until light and fluffy.\n 3. Beat in the eggs, one at a time, followed by the vanilla extract.\n 4. In a separate bowl, whisk together the flour, baking soda, and salt. Gradually add the dry ingredients to the wet ingredients, mixing until just combined.\n 5. Fold in the chocolate chips.\n 6. Drop rounded tablespoons of dough onto the prepared baking sheet, spacing them about 2 inches apart.\n 7. Bake for 10-12 minutes, or until the edges are lightly golden.\n 8. Allow the cookies to cool on the baking sheet for a few minutes, then transfer them to a wire rack to cool completely.\n Enjoy your homemade chocolate chip cookies!'
  • 'Add 3+3: 6 Add 5+5: 10'
  • 'Q: look right after look twice\nA: "look right after look twice" can be solved by: "look right", "look twice".\n\nQ: jump opposite right thrice and walk\nA: "jump opposite right thrice" can be solved by: "jump opposite right", "jump opposite right thrice". "walk" can be solved by: "walk". So, "jump opposite right thrice and walk" can be solved by: "jump opposite right", "jump opposite right thrice", "walk".\n\nQ: run left twice and run right\nA: "run left twice" can be solved by: "run left", "run left twice". "run right" can be solved by "run right". So, "run left twice and run right" can be solved by: "run left", "run left twice", "run right".\n\nQ: run opposite right\nA: "run opposite right" can be solved by "run opposite right".\n\nQ: look opposite right thrice after walk\nA: "look opposite right thrice" can be solved by: "look opposite right", "look opposite right thrice". "walk" can be solved by "walk". So, "look opposite right thrice after walk" can be solved by: "look opposite right", "look opposite right thrice", "walk".\n\nQ: jump around right\nA: "jump around right" can be solved by: "jump right", "jump around right". So, "jump around right" can be solved by: "jump right", "jump around right".\n\nQ: look around right thrice and walk\nA: "look around right thrice" can be solved by: "look right", "look around right", "look around right thrice". "walk" can be solved by "walk". So, "look around right thrice and walk" can be solved by: "look right", "look around right", "look around right thrice", "walk".\n\nQ: turn right after run right thrice\nA: "turn right" can be solved by: "turn right". "run right thrice" can be solved by: "run right", "run right thrice". So, "turn right after run right thrice" can be solved by: "turn right", "run right", "run right thrice".'
style
  • 'to create dramatic images'
  • "Create a website that offers personalized meal plans based on users' dietary preferences, health goals, and allergy restrictions, taking into account nutritional values, portion sizes, and easy-to-follow recipes for a convenient and healthier lifestyle."
  • 'Please enclose the essay in tags.'
tone-of-voice
  • 'Develop a marketing campaign that targets a specific demographic and incorporates interactive elements to increase engagement.'
  • 'Use a friendly tone while maintaining a professional demeanor in the email.'
  • 'Develop a customer loyalty program that rewards frequent shoppers with exclusive discounts and personalized offers.'
escape_hedge
  • 'Introduce a mobile app that gamifies the process of learning new languages to make it more engaging and fun for users.'
  • 'If the product is out of stock, provide suggestions for alternative products.'
  • 'and if none can be found, reply "Unable to find docs".'
chain-of-thought
  • 'Develop a step-by-step guide or tutorial for a specific skill or process.'
  • 'Methodological thinking: Adopting a methodical approach to problem-solving, focusing on step-by-step analysis and decision-making.'
  • 'Progress gradually and logically.'
emotion
  • 'Foster a growth mindset by seeking feedback and continuously learning from your experiences. Embrace failure as a stepping stone towards improvement and future success. Confidence score: 0.9'
  • 'Cultivate a growth mindset and constantly strive for personal development. Your continuous learning will unlock endless possibilities.'
  • 'Believe in yourself and your abilities. Confidence is key to achieving your goals.'
choices
  • "- The discovery of sunspots by Chinese sources predates John of Worcester's recorded sighting by more than 1000 years.\n- Unusual weather conditions, such as fog or thin clouds, may have enabled John of Worcester to view sunspots with the naked eye during daylight hours.\n- The occurrence of an aurora borealis does not always require significant sunspot activity in the previous week.\n- Only heavy sunspot activity can result in an aurora borealis visible at latitudes as low as that of Korea.\n- John of Worcester's account of sunspots includes a drawing, potentially making it the earliest known illustration of sunspot activity."
  • "a) An aurora borealis can sometimes occur even when there has been no significant sunspot activity in the previous week. \nb) Chinese sources recorded the sighting of sunspots more than 1000 years before John of Worcester did. \nc) Only heavy sunspot activity could have resulted in an aurora borealis viewable at a latitude as low as that of Korea. \nd) Because it is impossible to view sunspots with the naked eye under typical daylight conditions, the sighting recorded by John of Worcester would have taken place under unusual weather conditions such as fog or thin clouds. \ne) John of Worcester's account included a drawing of the sunspots, which could be the earliest illustration of sunspot activity."
  • 'c) Research shows that certain plants have the ability to thrive in extreme temperatures, providing important insights into potential agricultural advancements in harsh environments.'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("lies in the front.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 24.3390 947
Label Training Sample Count
role 282
instruction 480
answer 410
style 139
context 322
question 219
example 64
chain-of-thought 36
tone-of-voice 38
choices 21
escape_hedge 26
emotion 25

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 7
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0011 1 0.4475 -
0.0554 50 0.3293 -
0.1107 100 0.267 -
0.1661 150 0.2406 -
0.2215 200 0.1669 -
0.2769 250 0.1687 -
0.3322 300 0.1562 -
0.3876 350 0.1327 -
0.4430 400 0.1285 -
0.4983 450 0.0719 -
0.5537 500 0.0747 -
0.6091 550 0.1149 -
0.6645 600 0.0774 -
0.7198 650 0.0608 -
0.7752 700 0.0763 -
0.8306 750 0.0992 -
0.8859 800 0.0622 -
0.9413 850 0.0198 -
0.9967 900 0.0583 -
1.0 903 - 0.1126
1.0520 950 0.0344 -
1.1074 1000 0.0179 -
1.1628 1050 0.0412 -
1.2182 1100 0.0857 -
1.2735 1150 0.0099 -
1.3289 1200 0.088 -
1.3843 1250 0.0183 -
1.4396 1300 0.0172 -
1.4950 1350 0.0695 -
1.5504 1400 0.037 -
1.6058 1450 0.019 -
1.6611 1500 0.0425 -
1.7165 1550 0.0078 -
1.7719 1600 0.0593 -
1.8272 1650 0.0269 -
1.8826 1700 0.035 -
1.9380 1750 0.0258 -
1.9934 1800 0.034 -
2.0 1806 - 0.1066
2.0487 1850 0.0259 -
2.1041 1900 0.0301 -
2.1595 1950 0.0171 -
2.2148 2000 0.0041 -
2.2702 2050 0.0448 -
2.3256 2100 0.0317 -
2.3810 2150 0.0156 -
2.4363 2200 0.0108 -
2.4917 2250 0.0204 -
2.5471 2300 0.0143 -
2.6024 2350 0.0211 -
2.6578 2400 0.0376 -
2.7132 2450 0.0206 -
2.7685 2500 0.0548 -
2.8239 2550 0.0371 -
2.8793 2600 0.0049 -
2.9347 2650 0.0125 -
2.9900 2700 0.0457 -
3.0 2709 - 0.1187
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.4
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.36.2
  • PyTorch: 1.13.0+cpu
  • Datasets: 2.16.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}