|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- es |
|
license: mit |
|
model-index: |
|
- name: es_pharmaconer_ner_trf |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.9066736184 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.9152631579 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.9109481404 |
|
|
|
widget: |
|
- text: "Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D." |
|
- text: "Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales." |
|
- text: "Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos." |
|
--- |
|
Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL |
|
|
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `es_pharmaconer_ner_trf` | |
|
| **Version** | `3.4.1` | |
|
| **spaCy** | `>=3.4.1,<3.5.0` | |
|
| **Default Pipeline** | `transformer`, `ner` | |
|
| **Components** | `transformer`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | `mit` | |
|
| **Author** | [The Text Mining Unit from Barcelona Supercomputing Center.](https://huggingface.co/PlanTL-GOB-ES/) | |
|
| **Copyright** | Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) | |
|
| **Funding** | This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (4 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `NORMALIZABLES`, `NO_NORMALIZABLES`, `PROTEINAS`, `UNCLEAR` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 91.09 | |
|
| `ENTS_P` | 90.67 | |
|
| `ENTS_R` | 91.53 | |
|
| `TRANSFORMER_LOSS` | 15719.51 | |
|
| `NER_LOSS` | 22469.88 | |