crodri's picture
Update README.md
9bc85db
metadata
tags:
  - spacy
  - token-classification
language:
  - es
license: mit
model-index:
  - name: es_pharmaconer_ner_trf
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9066736184
          - name: NER Recall
            type: recall
            value: 0.9152631579
          - name: NER F Score
            type: f_score
            value: 0.9109481404
widget:
  - text: >-
      Se realizó estudio analítico destacando incremento de niveles de PTH y
      vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al
      exceso de suplementación de vitamina D.
  - text: >-
      Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio
      en nuestras consultas, realizándose análisis con función renal, calcio
      sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales.
  - text: >-
      Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos
      antinucleares (ANA) y serologías, examen de orina, así como biopsia de la
      lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP,
      anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos.

Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the official website. Visit our GitHub repository. This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL

Feature Description
Name es_pharmaconer_ner_trf
Version 3.4.1
spaCy >=3.4.1,<3.5.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License mit
Author The Text Mining Unit from Barcelona Supercomputing Center.
Copyright Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL

Label Scheme

View label scheme (4 labels for 1 components)
Component Labels
ner NORMALIZABLES, NO_NORMALIZABLES, PROTEINAS, UNCLEAR

Accuracy

Type Score
ENTS_F 91.09
ENTS_P 90.67
ENTS_R 91.53
TRANSFORMER_LOSS 15719.51
NER_LOSS 22469.88