|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: finetuned-affecthq |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7179302910528207 |
|
- name: Precision |
|
type: precision |
|
value: 0.7173911115103917 |
|
- name: Recall |
|
type: recall |
|
value: 0.7179302910528207 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7166821507529032 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned-affecthq |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8116 |
|
- Accuracy: 0.7179 |
|
- Precision: 0.7174 |
|
- Recall: 0.7179 |
|
- F1: 0.7167 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 17 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.5413 | 1.0 | 174 | 1.4810 | 0.4898 | 0.4867 | 0.4898 | 0.4409 | |
|
| 1.0367 | 2.0 | 348 | 1.0571 | 0.6155 | 0.6172 | 0.6155 | 0.6041 | |
|
| 0.9534 | 3.0 | 522 | 0.9673 | 0.6475 | 0.6476 | 0.6475 | 0.6375 | |
|
| 0.8532 | 4.0 | 696 | 0.9056 | 0.6748 | 0.6710 | 0.6748 | 0.6704 | |
|
| 0.8211 | 5.0 | 870 | 0.8707 | 0.6903 | 0.6912 | 0.6903 | 0.6836 | |
|
| 0.7797 | 6.0 | 1044 | 0.8472 | 0.7050 | 0.7050 | 0.7050 | 0.7019 | |
|
| 0.7816 | 7.0 | 1218 | 0.8298 | 0.7111 | 0.7099 | 0.7111 | 0.7096 | |
|
| 0.7135 | 8.0 | 1392 | 0.8186 | 0.7111 | 0.7116 | 0.7111 | 0.7105 | |
|
| 0.6697 | 9.0 | 1566 | 0.8143 | 0.7140 | 0.7124 | 0.7140 | 0.7126 | |
|
| 0.6765 | 10.0 | 1740 | 0.8116 | 0.7179 | 0.7174 | 0.7179 | 0.7167 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|