File size: 25,248 Bytes
d2f9b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
import os
import json
import math
import numbers
import args_manager
import tempfile
import modules.flags
import modules.sdxl_styles
from modules.model_loader import load_file_from_url
from modules.util import get_files_from_folder, makedirs_with_log
from modules.flags import OutputFormat, Performance, MetadataScheme
def get_config_path(key, default_value):
env = os.getenv(key)
if env is not None and isinstance(env, str):
print(f"Environment: {key} = {env}")
return env
else:
return os.path.abspath(default_value)
config_path = get_config_path('config_path', "./config.txt")
config_example_path = get_config_path('config_example_path', "config_modification_tutorial.txt")
config_dict = {}
always_save_keys = []
visited_keys = []
try:
with open(os.path.abspath(f'./presets/default.json'), "r", encoding="utf-8") as json_file:
config_dict.update(json.load(json_file))
except Exception as e:
print(f'Load default preset failed.')
print(e)
try:
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as json_file:
config_dict.update(json.load(json_file))
always_save_keys = list(config_dict.keys())
except Exception as e:
print(f'Failed to load config file "{config_path}" . The reason is: {str(e)}')
print('Please make sure that:')
print(f'1. The file "{config_path}" is a valid text file, and you have access to read it.')
print('2. Use "\\\\" instead of "\\" when describing paths.')
print('3. There is no "," before the last "}".')
print('4. All key/value formats are correct.')
def try_load_deprecated_user_path_config():
global config_dict
if not os.path.exists('user_path_config.txt'):
return
try:
deprecated_config_dict = json.load(open('user_path_config.txt', "r", encoding="utf-8"))
def replace_config(old_key, new_key):
if old_key in deprecated_config_dict:
config_dict[new_key] = deprecated_config_dict[old_key]
del deprecated_config_dict[old_key]
replace_config('modelfile_path', 'path_checkpoints')
replace_config('lorafile_path', 'path_loras')
replace_config('embeddings_path', 'path_embeddings')
replace_config('vae_approx_path', 'path_vae_approx')
replace_config('upscale_models_path', 'path_upscale_models')
replace_config('inpaint_models_path', 'path_inpaint')
replace_config('controlnet_models_path', 'path_controlnet')
replace_config('clip_vision_models_path', 'path_clip_vision')
replace_config('fooocus_expansion_path', 'path_fooocus_expansion')
replace_config('temp_outputs_path', 'path_outputs')
if deprecated_config_dict.get("default_model", None) == 'juggernautXL_version6Rundiffusion.safetensors':
os.replace('user_path_config.txt', 'user_path_config-deprecated.txt')
print('Config updated successfully in silence. '
'A backup of previous config is written to "user_path_config-deprecated.txt".')
return
if input("Newer models and configs are available. "
"Download and update files? [Y/n]:") in ['n', 'N', 'No', 'no', 'NO']:
config_dict.update(deprecated_config_dict)
print('Loading using deprecated old models and deprecated old configs.')
return
else:
os.replace('user_path_config.txt', 'user_path_config-deprecated.txt')
print('Config updated successfully by user. '
'A backup of previous config is written to "user_path_config-deprecated.txt".')
return
except Exception as e:
print('Processing deprecated config failed')
print(e)
return
try_load_deprecated_user_path_config()
def get_presets():
preset_folder = 'presets'
presets = ['initial']
if not os.path.exists(preset_folder):
print('No presets found.')
return presets
return presets + [f[:f.index('.json')] for f in os.listdir(preset_folder) if f.endswith('.json')]
def try_get_preset_content(preset):
if isinstance(preset, str):
preset_path = os.path.abspath(f'./presets/{preset}.json')
try:
if os.path.exists(preset_path):
with open(preset_path, "r", encoding="utf-8") as json_file:
json_content = json.load(json_file)
print(f'Loaded preset: {preset_path}')
return json_content
else:
raise FileNotFoundError
except Exception as e:
print(f'Load preset [{preset_path}] failed')
print(e)
return {}
available_presets = get_presets()
preset = args_manager.args.preset
config_dict.update(try_get_preset_content(preset))
def get_path_output() -> str:
"""
Checking output path argument and overriding default path.
"""
global config_dict
path_output = get_dir_or_set_default('path_outputs', '../outputs/', make_directory=True)
if args_manager.args.output_path:
print(f'Overriding config value path_outputs with {args_manager.args.output_path}')
config_dict['path_outputs'] = path_output = args_manager.args.output_path
return path_output
def get_dir_or_set_default(key, default_value, as_array=False, make_directory=False):
global config_dict, visited_keys, always_save_keys
if key not in visited_keys:
visited_keys.append(key)
if key not in always_save_keys:
always_save_keys.append(key)
v = os.getenv(key)
if v is not None:
print(f"Environment: {key} = {v}")
config_dict[key] = v
else:
v = config_dict.get(key, None)
if isinstance(v, str):
if make_directory:
makedirs_with_log(v)
if os.path.exists(v) and os.path.isdir(v):
return v if not as_array else [v]
elif isinstance(v, list):
if make_directory:
for d in v:
makedirs_with_log(d)
if all([os.path.exists(d) and os.path.isdir(d) for d in v]):
return v
if v is not None:
print(f'Failed to load config key: {json.dumps({key:v})} is invalid or does not exist; will use {json.dumps({key:default_value})} instead.')
if isinstance(default_value, list):
dp = []
for path in default_value:
abs_path = os.path.abspath(os.path.join(os.path.dirname(__file__), path))
dp.append(abs_path)
os.makedirs(abs_path, exist_ok=True)
else:
dp = os.path.abspath(os.path.join(os.path.dirname(__file__), default_value))
os.makedirs(dp, exist_ok=True)
if as_array:
dp = [dp]
config_dict[key] = dp
return dp
paths_checkpoints = get_dir_or_set_default('path_checkpoints', ['../models/checkpoints/'], True)
paths_loras = get_dir_or_set_default('path_loras', ['../models/loras/'], True)
path_embeddings = get_dir_or_set_default('path_embeddings', '../models/embeddings/')
path_vae_approx = get_dir_or_set_default('path_vae_approx', '../models/vae_approx/')
path_upscale_models = get_dir_or_set_default('path_upscale_models', '../models/upscale_models/')
path_inpaint = get_dir_or_set_default('path_inpaint', '../models/inpaint/')
path_controlnet = get_dir_or_set_default('path_controlnet', '../models/controlnet/')
path_clip_vision = get_dir_or_set_default('path_clip_vision', '../models/clip_vision/')
path_fooocus_expansion = get_dir_or_set_default('path_fooocus_expansion', '../models/prompt_expansion/fooocus_expansion')
path_wildcards = get_dir_or_set_default('path_wildcards', '../wildcards/')
path_outputs = get_path_output()
def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False):
global config_dict, visited_keys
if key not in visited_keys:
visited_keys.append(key)
v = os.getenv(key)
if v is not None:
print(f"Environment: {key} = {v}")
config_dict[key] = v
if key not in config_dict:
config_dict[key] = default_value
return default_value
v = config_dict.get(key, None)
if not disable_empty_as_none:
if v is None or v == '':
v = 'None'
if validator(v):
return v
else:
if v is not None:
print(f'Failed to load config key: {json.dumps({key:v})} is invalid; will use {json.dumps({key:default_value})} instead.')
config_dict[key] = default_value
return default_value
def init_temp_path(path: str | None, default_path: str) -> str:
if args_manager.args.temp_path:
path = args_manager.args.temp_path
if path != '' and path != default_path:
try:
if not os.path.isabs(path):
path = os.path.abspath(path)
os.makedirs(path, exist_ok=True)
print(f'Using temp path {path}')
return path
except Exception as e:
print(f'Could not create temp path {path}. Reason: {e}')
print(f'Using default temp path {default_path} instead.')
os.makedirs(default_path, exist_ok=True)
return default_path
default_temp_path = os.path.join(tempfile.gettempdir(), 'fooocus')
temp_path = init_temp_path(get_config_item_or_set_default(
key='temp_path',
default_value=default_temp_path,
validator=lambda x: isinstance(x, str),
), default_temp_path)
temp_path_cleanup_on_launch = get_config_item_or_set_default(
key='temp_path_cleanup_on_launch',
default_value=True,
validator=lambda x: isinstance(x, bool)
)
default_base_model_name = default_model = get_config_item_or_set_default(
key='default_model',
default_value='model.safetensors',
validator=lambda x: isinstance(x, str)
)
previous_default_models = get_config_item_or_set_default(
key='previous_default_models',
default_value=[],
validator=lambda x: isinstance(x, list) and all(isinstance(k, str) for k in x)
)
default_refiner_model_name = default_refiner = get_config_item_or_set_default(
key='default_refiner',
default_value='None',
validator=lambda x: isinstance(x, str)
)
default_refiner_switch = get_config_item_or_set_default(
key='default_refiner_switch',
default_value=0.8,
validator=lambda x: isinstance(x, numbers.Number) and 0 <= x <= 1
)
default_loras_min_weight = get_config_item_or_set_default(
key='default_loras_min_weight',
default_value=-2,
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
)
default_loras_max_weight = get_config_item_or_set_default(
key='default_loras_max_weight',
default_value=2,
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
)
default_loras = get_config_item_or_set_default(
key='default_loras',
default_value=[
[
True,
"None",
1.0
],
[
True,
"None",
1.0
],
[
True,
"None",
1.0
],
[
True,
"None",
1.0
],
[
True,
"None",
1.0
]
],
validator=lambda x: isinstance(x, list) and all(
len(y) == 3 and isinstance(y[0], bool) and isinstance(y[1], str) and isinstance(y[2], numbers.Number)
or len(y) == 2 and isinstance(y[0], str) and isinstance(y[1], numbers.Number)
for y in x)
)
default_loras = [(y[0], y[1], y[2]) if len(y) == 3 else (True, y[0], y[1]) for y in default_loras]
default_max_lora_number = get_config_item_or_set_default(
key='default_max_lora_number',
default_value=len(default_loras) if isinstance(default_loras, list) and len(default_loras) > 0 else 5,
validator=lambda x: isinstance(x, int) and x >= 1
)
default_cfg_scale = get_config_item_or_set_default(
key='default_cfg_scale',
default_value=7.0,
validator=lambda x: isinstance(x, numbers.Number)
)
default_sample_sharpness = get_config_item_or_set_default(
key='default_sample_sharpness',
default_value=2.0,
validator=lambda x: isinstance(x, numbers.Number)
)
default_sampler = get_config_item_or_set_default(
key='default_sampler',
default_value='dpmpp_2m_sde_gpu',
validator=lambda x: x in modules.flags.sampler_list
)
default_scheduler = get_config_item_or_set_default(
key='default_scheduler',
default_value='karras',
validator=lambda x: x in modules.flags.scheduler_list
)
default_styles = get_config_item_or_set_default(
key='default_styles',
default_value=[
"Fooocus V2",
"Fooocus Enhance",
"Fooocus Sharp"
],
validator=lambda x: isinstance(x, list) and all(y in modules.sdxl_styles.legal_style_names for y in x)
)
default_prompt_negative = get_config_item_or_set_default(
key='default_prompt_negative',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
)
default_prompt = get_config_item_or_set_default(
key='default_prompt',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
)
default_performance = get_config_item_or_set_default(
key='default_performance',
default_value=Performance.SPEED.value,
validator=lambda x: x in Performance.list()
)
default_advanced_checkbox = get_config_item_or_set_default(
key='default_advanced_checkbox',
default_value=False,
validator=lambda x: isinstance(x, bool)
)
default_max_image_number = get_config_item_or_set_default(
key='default_max_image_number',
default_value=32,
validator=lambda x: isinstance(x, int) and x >= 1
)
default_output_format = get_config_item_or_set_default(
key='default_output_format',
default_value='png',
validator=lambda x: x in OutputFormat.list()
)
default_image_number = get_config_item_or_set_default(
key='default_image_number',
default_value=2,
validator=lambda x: isinstance(x, int) and 1 <= x <= default_max_image_number
)
checkpoint_downloads = get_config_item_or_set_default(
key='checkpoint_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
lora_downloads = get_config_item_or_set_default(
key='lora_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
embeddings_downloads = get_config_item_or_set_default(
key='embeddings_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
available_aspect_ratios = get_config_item_or_set_default(
key='available_aspect_ratios',
default_value=[
'704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152',
'896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960',
'1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768',
'1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640',
'1664*576', '1728*576'
],
validator=lambda x: isinstance(x, list) and all('*' in v for v in x) and len(x) > 1
)
default_aspect_ratio = get_config_item_or_set_default(
key='default_aspect_ratio',
default_value='1152*896' if '1152*896' in available_aspect_ratios else available_aspect_ratios[0],
validator=lambda x: x in available_aspect_ratios
)
default_inpaint_engine_version = get_config_item_or_set_default(
key='default_inpaint_engine_version',
default_value='v2.6',
validator=lambda x: x in modules.flags.inpaint_engine_versions
)
default_cfg_tsnr = get_config_item_or_set_default(
key='default_cfg_tsnr',
default_value=7.0,
validator=lambda x: isinstance(x, numbers.Number)
)
default_overwrite_step = get_config_item_or_set_default(
key='default_overwrite_step',
default_value=-1,
validator=lambda x: isinstance(x, int)
)
default_overwrite_switch = get_config_item_or_set_default(
key='default_overwrite_switch',
default_value=-1,
validator=lambda x: isinstance(x, int)
)
example_inpaint_prompts = get_config_item_or_set_default(
key='example_inpaint_prompts',
default_value=[
'highly detailed face', 'detailed girl face', 'detailed man face', 'detailed hand', 'beautiful eyes'
],
validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x)
)
default_save_metadata_to_images = get_config_item_or_set_default(
key='default_save_metadata_to_images',
default_value=False,
validator=lambda x: isinstance(x, bool)
)
default_metadata_scheme = get_config_item_or_set_default(
key='default_metadata_scheme',
default_value=MetadataScheme.FOOOCUS.value,
validator=lambda x: x in [y[1] for y in modules.flags.metadata_scheme if y[1] == x]
)
metadata_created_by = get_config_item_or_set_default(
key='metadata_created_by',
default_value='',
validator=lambda x: isinstance(x, str)
)
example_inpaint_prompts = [[x] for x in example_inpaint_prompts]
config_dict["default_loras"] = default_loras = default_loras[:default_max_lora_number] + [[True, 'None', 1.0] for _ in range(default_max_lora_number - len(default_loras))]
# mapping config to meta parameter
possible_preset_keys = {
"default_model": "base_model",
"default_refiner": "refiner_model",
"default_refiner_switch": "refiner_switch",
"previous_default_models": "previous_default_models",
"default_loras_min_weight": "default_loras_min_weight",
"default_loras_max_weight": "default_loras_max_weight",
"default_loras": "<processed>",
"default_cfg_scale": "guidance_scale",
"default_sample_sharpness": "sharpness",
"default_sampler": "sampler",
"default_scheduler": "scheduler",
"default_overwrite_step": "steps",
"default_performance": "performance",
"default_image_number": "image_number",
"default_prompt": "prompt",
"default_prompt_negative": "negative_prompt",
"default_styles": "styles",
"default_aspect_ratio": "resolution",
"default_save_metadata_to_images": "default_save_metadata_to_images",
"checkpoint_downloads": "checkpoint_downloads",
"embeddings_downloads": "embeddings_downloads",
"lora_downloads": "lora_downloads"
}
REWRITE_PRESET = False
if REWRITE_PRESET and isinstance(args_manager.args.preset, str):
save_path = 'presets/' + args_manager.args.preset + '.json'
with open(save_path, "w", encoding="utf-8") as json_file:
json.dump({k: config_dict[k] for k in possible_preset_keys}, json_file, indent=4)
print(f'Preset saved to {save_path}. Exiting ...')
exit(0)
def add_ratio(x):
a, b = x.replace('*', ' ').split(' ')[:2]
a, b = int(a), int(b)
g = math.gcd(a, b)
return f'{a}×{b} <span style="color: grey;"> \U00002223 {a // g}:{b // g}</span>'
default_aspect_ratio = add_ratio(default_aspect_ratio)
available_aspect_ratios = [add_ratio(x) for x in available_aspect_ratios]
# Only write config in the first launch.
if not os.path.exists(config_path):
with open(config_path, "w", encoding="utf-8") as json_file:
json.dump({k: config_dict[k] for k in always_save_keys}, json_file, indent=4)
# Always write tutorials.
with open(config_example_path, "w", encoding="utf-8") as json_file:
cpa = config_path.replace("\\", "\\\\")
json_file.write(f'You can modify your "{cpa}" using the below keys, formats, and examples.\n'
f'Do not modify this file. Modifications in this file will not take effect.\n'
f'This file is a tutorial and example. Please edit "{cpa}" to really change any settings.\n'
+ 'Remember to split the paths with "\\\\" rather than "\\", '
'and there is no "," before the last "}". \n\n\n')
json.dump({k: config_dict[k] for k in visited_keys}, json_file, indent=4)
model_filenames = []
lora_filenames = []
wildcard_filenames = []
sdxl_lcm_lora = 'sdxl_lcm_lora.safetensors'
sdxl_lightning_lora = 'sdxl_lightning_4step_lora.safetensors'
loras_metadata_remove = [sdxl_lcm_lora, sdxl_lightning_lora]
def get_model_filenames(folder_paths, extensions=None, name_filter=None):
if extensions is None:
extensions = ['.pth', '.ckpt', '.bin', '.safetensors', '.fooocus.patch']
files = []
for folder in folder_paths:
files += get_files_from_folder(folder, extensions, name_filter)
return files
def update_files():
global model_filenames, lora_filenames, wildcard_filenames, available_presets
model_filenames = get_model_filenames(paths_checkpoints)
lora_filenames = get_model_filenames(paths_loras)
wildcard_filenames = get_files_from_folder(path_wildcards, ['.txt'])
available_presets = get_presets()
return
def downloading_inpaint_models(v):
assert v in modules.flags.inpaint_engine_versions
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/fooocus_inpaint_head.pth',
model_dir=path_inpaint,
file_name='fooocus_inpaint_head.pth'
)
head_file = os.path.join(path_inpaint, 'fooocus_inpaint_head.pth')
patch_file = None
if v == 'v1':
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint.fooocus.patch',
model_dir=path_inpaint,
file_name='inpaint.fooocus.patch'
)
patch_file = os.path.join(path_inpaint, 'inpaint.fooocus.patch')
if v == 'v2.5':
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v25.fooocus.patch',
model_dir=path_inpaint,
file_name='inpaint_v25.fooocus.patch'
)
patch_file = os.path.join(path_inpaint, 'inpaint_v25.fooocus.patch')
if v == 'v2.6':
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v26.fooocus.patch',
model_dir=path_inpaint,
file_name='inpaint_v26.fooocus.patch'
)
patch_file = os.path.join(path_inpaint, 'inpaint_v26.fooocus.patch')
return head_file, patch_file
def downloading_sdxl_lcm_lora():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/sdxl_lcm_lora.safetensors',
model_dir=paths_loras[0],
file_name=sdxl_lcm_lora
)
return sdxl_lcm_lora
def downloading_sdxl_lightning_lora():
load_file_from_url(
url='https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_4step_lora.safetensors',
model_dir=paths_loras[0],
file_name=sdxl_lightning_lora
)
return sdxl_lightning_lora
def downloading_controlnet_canny():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/control-lora-canny-rank128.safetensors',
model_dir=path_controlnet,
file_name='control-lora-canny-rank128.safetensors'
)
return os.path.join(path_controlnet, 'control-lora-canny-rank128.safetensors')
def downloading_controlnet_cpds():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_xl_cpds_128.safetensors',
model_dir=path_controlnet,
file_name='fooocus_xl_cpds_128.safetensors'
)
return os.path.join(path_controlnet, 'fooocus_xl_cpds_128.safetensors')
def downloading_ip_adapters(v):
assert v in ['ip', 'face']
results = []
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/clip_vision_vit_h.safetensors',
model_dir=path_clip_vision,
file_name='clip_vision_vit_h.safetensors'
)
results += [os.path.join(path_clip_vision, 'clip_vision_vit_h.safetensors')]
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_ip_negative.safetensors',
model_dir=path_controlnet,
file_name='fooocus_ip_negative.safetensors'
)
results += [os.path.join(path_controlnet, 'fooocus_ip_negative.safetensors')]
if v == 'ip':
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/ip-adapter-plus_sdxl_vit-h.bin',
model_dir=path_controlnet,
file_name='ip-adapter-plus_sdxl_vit-h.bin'
)
results += [os.path.join(path_controlnet, 'ip-adapter-plus_sdxl_vit-h.bin')]
if v == 'face':
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/ip-adapter-plus-face_sdxl_vit-h.bin',
model_dir=path_controlnet,
file_name='ip-adapter-plus-face_sdxl_vit-h.bin'
)
results += [os.path.join(path_controlnet, 'ip-adapter-plus-face_sdxl_vit-h.bin')]
return results
def downloading_upscale_model():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_upscaler_s409985e5.bin',
model_dir=path_upscale_models,
file_name='fooocus_upscaler_s409985e5.bin'
)
return os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin')
update_files()
|