File size: 25,248 Bytes
d2f9b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import os
import json
import math
import numbers
import args_manager
import tempfile
import modules.flags
import modules.sdxl_styles

from modules.model_loader import load_file_from_url
from modules.util import get_files_from_folder, makedirs_with_log
from modules.flags import OutputFormat, Performance, MetadataScheme


def get_config_path(key, default_value):
    env = os.getenv(key)
    if env is not None and isinstance(env, str):
        print(f"Environment: {key} = {env}")
        return env
    else:
        return os.path.abspath(default_value)


config_path = get_config_path('config_path', "./config.txt")
config_example_path = get_config_path('config_example_path', "config_modification_tutorial.txt")
config_dict = {}
always_save_keys = []
visited_keys = []

try:
    with open(os.path.abspath(f'./presets/default.json'), "r", encoding="utf-8") as json_file:
        config_dict.update(json.load(json_file))
except Exception as e:
    print(f'Load default preset failed.')
    print(e)

try:
    if os.path.exists(config_path):
        with open(config_path, "r", encoding="utf-8") as json_file:
            config_dict.update(json.load(json_file))
            always_save_keys = list(config_dict.keys())
except Exception as e:
    print(f'Failed to load config file "{config_path}" . The reason is: {str(e)}')
    print('Please make sure that:')
    print(f'1. The file "{config_path}" is a valid text file, and you have access to read it.')
    print('2. Use "\\\\" instead of "\\" when describing paths.')
    print('3. There is no "," before the last "}".')
    print('4. All key/value formats are correct.')


def try_load_deprecated_user_path_config():
    global config_dict

    if not os.path.exists('user_path_config.txt'):
        return

    try:
        deprecated_config_dict = json.load(open('user_path_config.txt', "r", encoding="utf-8"))

        def replace_config(old_key, new_key):
            if old_key in deprecated_config_dict:
                config_dict[new_key] = deprecated_config_dict[old_key]
                del deprecated_config_dict[old_key]

        replace_config('modelfile_path', 'path_checkpoints')
        replace_config('lorafile_path', 'path_loras')
        replace_config('embeddings_path', 'path_embeddings')
        replace_config('vae_approx_path', 'path_vae_approx')
        replace_config('upscale_models_path', 'path_upscale_models')
        replace_config('inpaint_models_path', 'path_inpaint')
        replace_config('controlnet_models_path', 'path_controlnet')
        replace_config('clip_vision_models_path', 'path_clip_vision')
        replace_config('fooocus_expansion_path', 'path_fooocus_expansion')
        replace_config('temp_outputs_path', 'path_outputs')

        if deprecated_config_dict.get("default_model", None) == 'juggernautXL_version6Rundiffusion.safetensors':
            os.replace('user_path_config.txt', 'user_path_config-deprecated.txt')
            print('Config updated successfully in silence. '
                  'A backup of previous config is written to "user_path_config-deprecated.txt".')
            return

        if input("Newer models and configs are available. "
                 "Download and update files? [Y/n]:") in ['n', 'N', 'No', 'no', 'NO']:
            config_dict.update(deprecated_config_dict)
            print('Loading using deprecated old models and deprecated old configs.')
            return
        else:
            os.replace('user_path_config.txt', 'user_path_config-deprecated.txt')
            print('Config updated successfully by user. '
                  'A backup of previous config is written to "user_path_config-deprecated.txt".')
            return
    except Exception as e:
        print('Processing deprecated config failed')
        print(e)
    return


try_load_deprecated_user_path_config()


def get_presets():
    preset_folder = 'presets'
    presets = ['initial']
    if not os.path.exists(preset_folder):
        print('No presets found.')
        return presets

    return presets + [f[:f.index('.json')] for f in os.listdir(preset_folder) if f.endswith('.json')]


def try_get_preset_content(preset):
    if isinstance(preset, str):
        preset_path = os.path.abspath(f'./presets/{preset}.json')
        try:
            if os.path.exists(preset_path):
                with open(preset_path, "r", encoding="utf-8") as json_file:
                    json_content = json.load(json_file)
                    print(f'Loaded preset: {preset_path}')
                    return json_content
            else:
                raise FileNotFoundError
        except Exception as e:
            print(f'Load preset [{preset_path}] failed')
            print(e)
    return {}

available_presets = get_presets()
preset = args_manager.args.preset
config_dict.update(try_get_preset_content(preset))

def get_path_output() -> str:
    """
    Checking output path argument and overriding default path.
    """
    global config_dict
    path_output = get_dir_or_set_default('path_outputs', '../outputs/', make_directory=True)
    if args_manager.args.output_path:
        print(f'Overriding config value path_outputs with {args_manager.args.output_path}')
        config_dict['path_outputs'] = path_output = args_manager.args.output_path
    return path_output


def get_dir_or_set_default(key, default_value, as_array=False, make_directory=False):
    global config_dict, visited_keys, always_save_keys

    if key not in visited_keys:
        visited_keys.append(key)

    if key not in always_save_keys:
        always_save_keys.append(key)

    v = os.getenv(key)
    if v is not None:
        print(f"Environment: {key} = {v}")
        config_dict[key] = v
    else:
        v = config_dict.get(key, None)

    if isinstance(v, str):
        if make_directory:
            makedirs_with_log(v)
        if os.path.exists(v) and os.path.isdir(v):
            return v if not as_array else [v]
    elif isinstance(v, list):
        if make_directory:
            for d in v:
                makedirs_with_log(d)
        if all([os.path.exists(d) and os.path.isdir(d) for d in v]):
            return v

    if v is not None:
        print(f'Failed to load config key: {json.dumps({key:v})} is invalid or does not exist; will use {json.dumps({key:default_value})} instead.')
    if isinstance(default_value, list):
        dp = []
        for path in default_value:
            abs_path = os.path.abspath(os.path.join(os.path.dirname(__file__), path))
            dp.append(abs_path)
            os.makedirs(abs_path, exist_ok=True)
    else:
        dp = os.path.abspath(os.path.join(os.path.dirname(__file__), default_value))
        os.makedirs(dp, exist_ok=True)
        if as_array:
            dp = [dp]
    config_dict[key] = dp
    return dp


paths_checkpoints = get_dir_or_set_default('path_checkpoints', ['../models/checkpoints/'], True)
paths_loras = get_dir_or_set_default('path_loras', ['../models/loras/'], True)
path_embeddings = get_dir_or_set_default('path_embeddings', '../models/embeddings/')
path_vae_approx = get_dir_or_set_default('path_vae_approx', '../models/vae_approx/')
path_upscale_models = get_dir_or_set_default('path_upscale_models', '../models/upscale_models/')
path_inpaint = get_dir_or_set_default('path_inpaint', '../models/inpaint/')
path_controlnet = get_dir_or_set_default('path_controlnet', '../models/controlnet/')
path_clip_vision = get_dir_or_set_default('path_clip_vision', '../models/clip_vision/')
path_fooocus_expansion = get_dir_or_set_default('path_fooocus_expansion', '../models/prompt_expansion/fooocus_expansion')
path_wildcards = get_dir_or_set_default('path_wildcards', '../wildcards/')
path_outputs = get_path_output()


def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False):
    global config_dict, visited_keys

    if key not in visited_keys:
        visited_keys.append(key)
    
    v = os.getenv(key)
    if v is not None:
        print(f"Environment: {key} = {v}")
        config_dict[key] = v

    if key not in config_dict:
        config_dict[key] = default_value
        return default_value

    v = config_dict.get(key, None)
    if not disable_empty_as_none:
        if v is None or v == '':
            v = 'None'
    if validator(v):
        return v
    else:
        if v is not None:
            print(f'Failed to load config key: {json.dumps({key:v})} is invalid; will use {json.dumps({key:default_value})} instead.')
        config_dict[key] = default_value
        return default_value


def init_temp_path(path: str | None, default_path: str) -> str:
    if args_manager.args.temp_path:
        path = args_manager.args.temp_path

    if path != '' and path != default_path:
        try:
            if not os.path.isabs(path):
                path = os.path.abspath(path)
            os.makedirs(path, exist_ok=True)
            print(f'Using temp path {path}')
            return path
        except Exception as e:
            print(f'Could not create temp path {path}. Reason: {e}')
            print(f'Using default temp path {default_path} instead.')

    os.makedirs(default_path, exist_ok=True)
    return default_path


default_temp_path = os.path.join(tempfile.gettempdir(), 'fooocus')
temp_path = init_temp_path(get_config_item_or_set_default(
    key='temp_path',
    default_value=default_temp_path,
    validator=lambda x: isinstance(x, str),
), default_temp_path)
temp_path_cleanup_on_launch = get_config_item_or_set_default(
    key='temp_path_cleanup_on_launch',
    default_value=True,
    validator=lambda x: isinstance(x, bool)
)
default_base_model_name = default_model = get_config_item_or_set_default(
    key='default_model',
    default_value='model.safetensors',
    validator=lambda x: isinstance(x, str)
)
previous_default_models = get_config_item_or_set_default(
    key='previous_default_models',
    default_value=[],
    validator=lambda x: isinstance(x, list) and all(isinstance(k, str) for k in x)
)
default_refiner_model_name = default_refiner = get_config_item_or_set_default(
    key='default_refiner',
    default_value='None',
    validator=lambda x: isinstance(x, str)
)
default_refiner_switch = get_config_item_or_set_default(
    key='default_refiner_switch',
    default_value=0.8,
    validator=lambda x: isinstance(x, numbers.Number) and 0 <= x <= 1
)
default_loras_min_weight = get_config_item_or_set_default(
    key='default_loras_min_weight',
    default_value=-2,
    validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
)
default_loras_max_weight = get_config_item_or_set_default(
    key='default_loras_max_weight',
    default_value=2,
    validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
)
default_loras = get_config_item_or_set_default(
    key='default_loras',
    default_value=[
        [
            True,
            "None",
            1.0
        ],
        [
            True,
            "None",
            1.0
        ],
        [
            True,
            "None",
            1.0
        ],
        [
            True,
            "None",
            1.0
        ],
        [
            True,
            "None",
            1.0
        ]
    ],
    validator=lambda x: isinstance(x, list) and all(
        len(y) == 3 and isinstance(y[0], bool) and isinstance(y[1], str) and isinstance(y[2], numbers.Number)
        or len(y) == 2 and isinstance(y[0], str) and isinstance(y[1], numbers.Number)
        for y in x)
)
default_loras = [(y[0], y[1], y[2]) if len(y) == 3 else (True, y[0], y[1]) for y in default_loras]
default_max_lora_number = get_config_item_or_set_default(
    key='default_max_lora_number',
    default_value=len(default_loras) if isinstance(default_loras, list) and len(default_loras) > 0 else 5,
    validator=lambda x: isinstance(x, int) and x >= 1
)
default_cfg_scale = get_config_item_or_set_default(
    key='default_cfg_scale',
    default_value=7.0,
    validator=lambda x: isinstance(x, numbers.Number)
)
default_sample_sharpness = get_config_item_or_set_default(
    key='default_sample_sharpness',
    default_value=2.0,
    validator=lambda x: isinstance(x, numbers.Number)
)
default_sampler = get_config_item_or_set_default(
    key='default_sampler',
    default_value='dpmpp_2m_sde_gpu',
    validator=lambda x: x in modules.flags.sampler_list
)
default_scheduler = get_config_item_or_set_default(
    key='default_scheduler',
    default_value='karras',
    validator=lambda x: x in modules.flags.scheduler_list
)
default_styles = get_config_item_or_set_default(
    key='default_styles',
    default_value=[
        "Fooocus V2",
        "Fooocus Enhance",
        "Fooocus Sharp"
    ],
    validator=lambda x: isinstance(x, list) and all(y in modules.sdxl_styles.legal_style_names for y in x)
)
default_prompt_negative = get_config_item_or_set_default(
    key='default_prompt_negative',
    default_value='',
    validator=lambda x: isinstance(x, str),
    disable_empty_as_none=True
)
default_prompt = get_config_item_or_set_default(
    key='default_prompt',
    default_value='',
    validator=lambda x: isinstance(x, str),
    disable_empty_as_none=True
)
default_performance = get_config_item_or_set_default(
    key='default_performance',
    default_value=Performance.SPEED.value,
    validator=lambda x: x in Performance.list()
)
default_advanced_checkbox = get_config_item_or_set_default(
    key='default_advanced_checkbox',
    default_value=False,
    validator=lambda x: isinstance(x, bool)
)
default_max_image_number = get_config_item_or_set_default(
    key='default_max_image_number',
    default_value=32,
    validator=lambda x: isinstance(x, int) and x >= 1
)
default_output_format = get_config_item_or_set_default(
    key='default_output_format',
    default_value='png',
    validator=lambda x: x in OutputFormat.list()
)
default_image_number = get_config_item_or_set_default(
    key='default_image_number',
    default_value=2,
    validator=lambda x: isinstance(x, int) and 1 <= x <= default_max_image_number
)
checkpoint_downloads = get_config_item_or_set_default(
    key='checkpoint_downloads',
    default_value={},
    validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
lora_downloads = get_config_item_or_set_default(
    key='lora_downloads',
    default_value={},
    validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
embeddings_downloads = get_config_item_or_set_default(
    key='embeddings_downloads',
    default_value={},
    validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
available_aspect_ratios = get_config_item_or_set_default(
    key='available_aspect_ratios',
    default_value=[
        '704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152',
        '896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960',
        '1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768',
        '1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640',
        '1664*576', '1728*576'
    ],
    validator=lambda x: isinstance(x, list) and all('*' in v for v in x) and len(x) > 1
)
default_aspect_ratio = get_config_item_or_set_default(
    key='default_aspect_ratio',
    default_value='1152*896' if '1152*896' in available_aspect_ratios else available_aspect_ratios[0],
    validator=lambda x: x in available_aspect_ratios
)
default_inpaint_engine_version = get_config_item_or_set_default(
    key='default_inpaint_engine_version',
    default_value='v2.6',
    validator=lambda x: x in modules.flags.inpaint_engine_versions
)
default_cfg_tsnr = get_config_item_or_set_default(
    key='default_cfg_tsnr',
    default_value=7.0,
    validator=lambda x: isinstance(x, numbers.Number)
)
default_overwrite_step = get_config_item_or_set_default(
    key='default_overwrite_step',
    default_value=-1,
    validator=lambda x: isinstance(x, int)
)
default_overwrite_switch = get_config_item_or_set_default(
    key='default_overwrite_switch',
    default_value=-1,
    validator=lambda x: isinstance(x, int)
)
example_inpaint_prompts = get_config_item_or_set_default(
    key='example_inpaint_prompts',
    default_value=[
        'highly detailed face', 'detailed girl face', 'detailed man face', 'detailed hand', 'beautiful eyes'
    ],
    validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x)
)
default_save_metadata_to_images = get_config_item_or_set_default(
    key='default_save_metadata_to_images',
    default_value=False,
    validator=lambda x: isinstance(x, bool)
)
default_metadata_scheme = get_config_item_or_set_default(
    key='default_metadata_scheme',
    default_value=MetadataScheme.FOOOCUS.value,
    validator=lambda x: x in [y[1] for y in modules.flags.metadata_scheme if y[1] == x]
)
metadata_created_by = get_config_item_or_set_default(
    key='metadata_created_by',
    default_value='',
    validator=lambda x: isinstance(x, str)
)

example_inpaint_prompts = [[x] for x in example_inpaint_prompts]

config_dict["default_loras"] = default_loras = default_loras[:default_max_lora_number] + [[True, 'None', 1.0] for _ in range(default_max_lora_number - len(default_loras))]

# mapping config to meta parameter 
possible_preset_keys = {
    "default_model": "base_model",
    "default_refiner": "refiner_model",
    "default_refiner_switch": "refiner_switch",
    "previous_default_models": "previous_default_models",
    "default_loras_min_weight": "default_loras_min_weight",
    "default_loras_max_weight": "default_loras_max_weight",
    "default_loras": "<processed>",
    "default_cfg_scale": "guidance_scale",
    "default_sample_sharpness": "sharpness",
    "default_sampler": "sampler",
    "default_scheduler": "scheduler",
    "default_overwrite_step": "steps",
    "default_performance": "performance",
    "default_image_number": "image_number",
    "default_prompt": "prompt",
    "default_prompt_negative": "negative_prompt",
    "default_styles": "styles",
    "default_aspect_ratio": "resolution",
    "default_save_metadata_to_images": "default_save_metadata_to_images",
    "checkpoint_downloads": "checkpoint_downloads",
    "embeddings_downloads": "embeddings_downloads",
    "lora_downloads": "lora_downloads"
}

REWRITE_PRESET = False

if REWRITE_PRESET and isinstance(args_manager.args.preset, str):
    save_path = 'presets/' + args_manager.args.preset + '.json'
    with open(save_path, "w", encoding="utf-8") as json_file:
        json.dump({k: config_dict[k] for k in possible_preset_keys}, json_file, indent=4)
    print(f'Preset saved to {save_path}. Exiting ...')
    exit(0)


def add_ratio(x):
    a, b = x.replace('*', ' ').split(' ')[:2]
    a, b = int(a), int(b)
    g = math.gcd(a, b)
    return f'{a}×{b} <span style="color: grey;"> \U00002223 {a // g}:{b // g}</span>'


default_aspect_ratio = add_ratio(default_aspect_ratio)
available_aspect_ratios = [add_ratio(x) for x in available_aspect_ratios]


# Only write config in the first launch.
if not os.path.exists(config_path):
    with open(config_path, "w", encoding="utf-8") as json_file:
        json.dump({k: config_dict[k] for k in always_save_keys}, json_file, indent=4)


# Always write tutorials.
with open(config_example_path, "w", encoding="utf-8") as json_file:
    cpa = config_path.replace("\\", "\\\\")
    json_file.write(f'You can modify your "{cpa}" using the below keys, formats, and examples.\n'
                    f'Do not modify this file. Modifications in this file will not take effect.\n'
                    f'This file is a tutorial and example. Please edit "{cpa}" to really change any settings.\n'
                    + 'Remember to split the paths with "\\\\" rather than "\\", '
                      'and there is no "," before the last "}". \n\n\n')
    json.dump({k: config_dict[k] for k in visited_keys}, json_file, indent=4)

model_filenames = []
lora_filenames = []
wildcard_filenames = []

sdxl_lcm_lora = 'sdxl_lcm_lora.safetensors'
sdxl_lightning_lora = 'sdxl_lightning_4step_lora.safetensors'
loras_metadata_remove = [sdxl_lcm_lora, sdxl_lightning_lora]


def get_model_filenames(folder_paths, extensions=None, name_filter=None):
    if extensions is None:
        extensions = ['.pth', '.ckpt', '.bin', '.safetensors', '.fooocus.patch']
    files = []
    for folder in folder_paths:
        files += get_files_from_folder(folder, extensions, name_filter)
    return files


def update_files():
    global model_filenames, lora_filenames, wildcard_filenames, available_presets
    model_filenames = get_model_filenames(paths_checkpoints)
    lora_filenames = get_model_filenames(paths_loras)
    wildcard_filenames = get_files_from_folder(path_wildcards, ['.txt'])
    available_presets = get_presets()
    return


def downloading_inpaint_models(v):
    assert v in modules.flags.inpaint_engine_versions

    load_file_from_url(
        url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/fooocus_inpaint_head.pth',
        model_dir=path_inpaint,
        file_name='fooocus_inpaint_head.pth'
    )
    head_file = os.path.join(path_inpaint, 'fooocus_inpaint_head.pth')
    patch_file = None

    if v == 'v1':
        load_file_from_url(
            url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint.fooocus.patch',
            model_dir=path_inpaint,
            file_name='inpaint.fooocus.patch'
        )
        patch_file = os.path.join(path_inpaint, 'inpaint.fooocus.patch')

    if v == 'v2.5':
        load_file_from_url(
            url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v25.fooocus.patch',
            model_dir=path_inpaint,
            file_name='inpaint_v25.fooocus.patch'
        )
        patch_file = os.path.join(path_inpaint, 'inpaint_v25.fooocus.patch')

    if v == 'v2.6':
        load_file_from_url(
            url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v26.fooocus.patch',
            model_dir=path_inpaint,
            file_name='inpaint_v26.fooocus.patch'
        )
        patch_file = os.path.join(path_inpaint, 'inpaint_v26.fooocus.patch')

    return head_file, patch_file


def downloading_sdxl_lcm_lora():
    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/sdxl_lcm_lora.safetensors',
        model_dir=paths_loras[0],
        file_name=sdxl_lcm_lora
    )
    return sdxl_lcm_lora

def downloading_sdxl_lightning_lora():
    load_file_from_url(
        url='https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_4step_lora.safetensors',
        model_dir=paths_loras[0],
        file_name=sdxl_lightning_lora
    )
    return sdxl_lightning_lora


def downloading_controlnet_canny():
    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/control-lora-canny-rank128.safetensors',
        model_dir=path_controlnet,
        file_name='control-lora-canny-rank128.safetensors'
    )
    return os.path.join(path_controlnet, 'control-lora-canny-rank128.safetensors')


def downloading_controlnet_cpds():
    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_xl_cpds_128.safetensors',
        model_dir=path_controlnet,
        file_name='fooocus_xl_cpds_128.safetensors'
    )
    return os.path.join(path_controlnet, 'fooocus_xl_cpds_128.safetensors')


def downloading_ip_adapters(v):
    assert v in ['ip', 'face']

    results = []

    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/clip_vision_vit_h.safetensors',
        model_dir=path_clip_vision,
        file_name='clip_vision_vit_h.safetensors'
    )
    results += [os.path.join(path_clip_vision, 'clip_vision_vit_h.safetensors')]

    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_ip_negative.safetensors',
        model_dir=path_controlnet,
        file_name='fooocus_ip_negative.safetensors'
    )
    results += [os.path.join(path_controlnet, 'fooocus_ip_negative.safetensors')]

    if v == 'ip':
        load_file_from_url(
            url='https://huggingface.co/lllyasviel/misc/resolve/main/ip-adapter-plus_sdxl_vit-h.bin',
            model_dir=path_controlnet,
            file_name='ip-adapter-plus_sdxl_vit-h.bin'
        )
        results += [os.path.join(path_controlnet, 'ip-adapter-plus_sdxl_vit-h.bin')]

    if v == 'face':
        load_file_from_url(
            url='https://huggingface.co/lllyasviel/misc/resolve/main/ip-adapter-plus-face_sdxl_vit-h.bin',
            model_dir=path_controlnet,
            file_name='ip-adapter-plus-face_sdxl_vit-h.bin'
        )
        results += [os.path.join(path_controlnet, 'ip-adapter-plus-face_sdxl_vit-h.bin')]

    return results


def downloading_upscale_model():
    load_file_from_url(
        url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_upscaler_s409985e5.bin',
        model_dir=path_upscale_models,
        file_name='fooocus_upscaler_s409985e5.bin'
    )
    return os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin')


update_files()