File size: 1,806 Bytes
fa5a527 cf7d3ed fa5a527 4ff9aaf 3c1cc87 9396ae5 4ff9aaf 4b4bc47 6e1c8e5 9396ae5 6e1c8e5 a4bc194 fa5a527 af20c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
datasets:
- openslr/openslr
- google/fleurs
- PhanithLIM/rfi-news-dataset
- seanghay/km-speech-corpus
language:
- km
metrics:
- wer
base_model:
- openai/whisper-small
pipeline_tag: automatic-speech-recognition
widget:
- src: output/1.wav
example_title: Audio 1
output:
text: "ក្នុងរាត្រីកាលដ៏ស្ងប់ស្ងាត់មួយ បានផ្តិតជាប់នៅរូបភាពដ៏សែនសោកសង្រែងជាខ្លាំងចំពោះបុរសចំទង់ម៉ុនាស់"
- src: output/2.wav
example_title: Audio 2
output:
text: "ពុក កុំជាទៅដល់ហើយ!សុំទេវិត្តអាចពុកកុំអោយកើតឯងមុនពេលខ្ញុំទៅដល់!"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.18
- eval_wer: 65.4881 (0.654881)
- eval_runtime: 2738.0001
- eval_samples_per_second: 1.588
- eval_steps_per_second: 0.199
- epoch: 4.0
- step: 4345
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |