File size: 15,353 Bytes
8fcf809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from flask import request, Flask, jsonify, make_response
from flask_cors import CORS, cross_origin
import base64
import os
import sys
import json
import numpy as np
import gc
import shutil

from timevis_backend.utils import *
from timevis_backend.res_logging import add_line

# flask for API server
app = Flask(__name__)
cors = CORS(app, supports_credentials=True)
app.config['CORS_HEADERS'] = 'Content-Type'

session = 5
API_result_path = "./API_result.csv"

@app.route('/updateProjection', methods=["POST", "GET"])
@cross_origin()
def update_projection():
    res = request.get_json()
    CONTENT_PATH = os.path.normpath(res['path'])
    iteration = int(res['iteration'])
    predicates = res["predicates"]
    # username = res['username']
    
    sys.path.append(CONTENT_PATH)
    timevis = initialize_backend(CONTENT_PATH)
    EPOCH = (iteration-1)*timevis.data_provider.p + timevis.data_provider.s

    embedding_2d, grid, decision_view, label_name_dict, label_color_list, label_list, max_iter, training_data_index, \
    testing_data_index, eval_new, prediction_list, selected_points, properties = update_epoch_projection(timevis, EPOCH, predicates)

    sys.path.remove(CONTENT_PATH)
    # add_line(API_result_path,['TT',username])
    return make_response(jsonify({'result': embedding_2d, 'grid_index': grid, 'grid_color': 'data:image/png;base64,' + decision_view,
                                  'label_name_dict':label_name_dict,
                                  'label_color_list': label_color_list, 'label_list': label_list,
                                  'maximum_iteration': max_iter, 
                                  'training_data': training_data_index,
                                  'testing_data': testing_data_index, 'evaluation': eval_new,
                                  'prediction_list': prediction_list,
                                  "selectedPoints":selected_points.tolist(),
                                  "properties":properties.tolist()}), 200)

@app.route('/query', methods=["POST"])
@cross_origin()
def filter():
    res = request.get_json()
    CONTENT_PATH = os.path.normpath(res['content_path'])
    iteration = int(res['iteration'])
    predicates = res["predicates"]
    username = res['username']

    sys.path.append(CONTENT_PATH)
    timevis = initialize_backend(CONTENT_PATH)
    EPOCH = (iteration-1)*timevis.data_provider.p + timevis.data_provider.s

    training_data_number = timevis.hyperparameters["TRAINING"]["train_num"]
    testing_data_number = timevis.hyperparameters["TRAINING"]["test_num"]

    current_index = timevis.get_epoch_index(EPOCH)
    selected_points = np.arange(training_data_number)[current_index]
    selected_points = np.concatenate((selected_points, np.arange(training_data_number, training_data_number + testing_data_number, 1)), axis=0)
    # selected_points = np.arange(training_data_number + testing_data_number)
    for key in predicates.keys():
        if key == "label":
            tmp = np.array(timevis.filter_label(predicates[key], int(EPOCH)))
        elif key == "type":
            tmp = np.array(timevis.filter_type(predicates[key], int(EPOCH)))
        elif key == "confidence":
            tmp = np.array(timevis.filter_conf(predicates[key][0],predicates[key][1],int(EPOCH)))
        else:
            tmp = np.arange(training_data_number + testing_data_number)
        selected_points = np.intersect1d(selected_points, tmp)
    sys.path.remove(CONTENT_PATH)
    add_line(API_result_path,['SQ',username])
    return make_response(jsonify({"selectedPoints": selected_points.tolist()}), 200)


# base64
@app.route('/sprite', methods=["POST","GET"])
@cross_origin()
def sprite_image():
    path = request.args.get("path")
    index = request.args.get("index")
    username = request.args.get("username")

    CONTENT_PATH = os.path.normpath(path)
    print('index', index)
    idx = int(index)
    pic_save_dir_path = os.path.join(CONTENT_PATH, "sprites", "{}.png".format(idx))
    img_stream = ''
    with open(pic_save_dir_path, 'rb') as img_f:
        img_stream = img_f.read()
        img_stream = base64.b64encode(img_stream).decode()
    add_line(API_result_path,['SI',username])
    return make_response(jsonify({"imgUrl":'data:image/png;base64,' + img_stream}), 200)


@app.route('/spriteList', methods=["POST"])
@cross_origin()
def sprite_list_image():
    data = request.get_json()
    indices = data["index"]
    path = data["path"]


    CONTENT_PATH = os.path.normpath(path)
    length = len(indices)
    urlList = {}

    for i in range(length):
        idx = indices[i]
        pic_save_dir_path = os.path.join(CONTENT_PATH, "sprites", "{}.png".format(idx))
        img_stream = ''
        with open(pic_save_dir_path, 'rb') as img_f:
            img_stream = img_f.read()
            img_stream = base64.b64encode(img_stream).decode()
            urlList[idx] = 'data:image/png;base64,' + img_stream
            # urlList.append('data:image/png;base64,' + img_stream)
    return make_response(jsonify({"urlList":urlList}), 200)


@app.route('/al_query', methods=["POST"])
@cross_origin()
def al_query():
    data = request.get_json()
    CONTENT_PATH = os.path.normpath(data['content_path'])
    iteration = data["iteration"]
    strategy = data["strategy"]
    budget = int(data["budget"])
    acc_idxs = data["accIndices"]
    rej_idxs = data["rejIndices"]
    user_name = data["username"]
    isRecommend = data["isRecommend"]
    # TODO dense_al parameter from frontend

    sys.path.append(CONTENT_PATH)
    timevis = initialize_backend(CONTENT_PATH, dense_al=True)
    # TODO add new sampling rule
    indices, labels, scores = timevis.al_query(iteration, budget, strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64))

    sort_i = np.argsort(-scores)
    indices = indices[sort_i]
    labels = labels[sort_i]
    scores = scores[sort_i]

    sys.path.remove(CONTENT_PATH)
    if not isRecommend: 
        add_line(API_result_path,['Feedback', user_name]) 
    else:
        add_line(API_result_path,['Recommend', user_name])
    return make_response(jsonify({"selectedPoints": indices.tolist(), "scores": scores.tolist(), "suggestLabels":labels.tolist()}), 200)

@app.route('/anomaly_query', methods=["POST"])
@cross_origin()
def anomaly_query():
    data = request.get_json()
    CONTENT_PATH = os.path.normpath(data['content_path'])
    budget = int(data["budget"])
    strategy = data["strategy"]
    acc_idxs = data["accIndices"]
    rej_idxs = data["rejIndices"]
    user_name = data["username"]
    isRecommend = data["isRecommend"]

    sys.path.append(CONTENT_PATH)

    timevis = initialize_backend(CONTENT_PATH)
    timevis.save_acc_and_rej(acc_idxs, rej_idxs, user_name)
    indices, scores, labels = timevis.suggest_abnormal(strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64), budget)
    clean_list,_ = timevis.suggest_normal(strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64), 1)

    sort_i = np.argsort(-scores)
    indices = indices[sort_i]
    labels = labels[sort_i]
    scores = scores[sort_i]

    sys.path.remove(CONTENT_PATH)
    if not isRecommend: 
        add_line(API_result_path,['Feedback', user_name]) 
    else:
        add_line(API_result_path,['Recommend', user_name])
    return make_response(jsonify({"selectedPoints": indices.tolist(), "scores": scores.tolist(), "suggestLabels":labels.tolist(),"cleanList":clean_list.tolist()}), 200)

@app.route('/al_train', methods=["POST"])
@cross_origin()
def al_train():
    data = request.get_json()
    CONTENT_PATH = os.path.normpath(data['content_path'])
    acc_idxs = data["accIndices"]
    rej_idxs = data["rejIndices"]
    iteration = data["iteration"]
    user_name = data["username"]
    sys.path.append(CONTENT_PATH)

    # default setting al_train is light version, we only save the last epoch
    
    timevis = initialize_backend(CONTENT_PATH, dense_al=False)
    timevis.save_acc_and_rej(iteration, acc_idxs, rej_idxs, user_name)
    timevis.al_train(iteration, acc_idxs)

    from config import config
    NEW_ITERATION =  timevis.get_max_iter()
    timevis.vis_train(NEW_ITERATION, **config)

    # update iteration projection
    embedding_2d, grid, decision_view, label_name_dict, label_color_list, label_list, _, training_data_index, \
    testing_data_index, eval_new, prediction_list, selected_points, properties = update_epoch_projection(timevis, NEW_ITERATION, dict())
    
    # rewirte json =========
    res_json_path = os.path.join(CONTENT_PATH, "iteration_structure.json")
    with open(res_json_path,encoding='utf8')as fp:
        json_data = json.load(fp)

        json_data.append({'value': NEW_ITERATION, 'name': 'iteration', 'pid': iteration})
        print('json_data',json_data)
    with open(res_json_path,'w')as r:
      json.dump(json_data, r)
    r.close()
    # rewirte json =========

    del config
    gc.collect()

    sys.path.remove(CONTENT_PATH)
 
    add_line(API_result_path,['al_train', user_name])
    return make_response(jsonify({'result': embedding_2d, 'grid_index': grid, 'grid_color': 'data:image/png;base64,' + decision_view,
                                  'label_name_dict': label_name_dict,
                                  'label_color_list': label_color_list, 'label_list': label_list,
                                  'maximum_iteration': NEW_ITERATION, 'training_data': training_data_index,
                                  'testing_data': testing_data_index, 'evaluation': eval_new,
                                  'prediction_list': prediction_list,
                                  "selectedPoints":selected_points.tolist(),
                                  "properties":properties.tolist()}), 200)

def clear_cache(con_paths):
    for CONTENT_PATH in con_paths.values():
        ac_flag = False
        target_path = os.path.join(CONTENT_PATH, "Model")
        dir_list = os.listdir(target_path)
        for dir in dir_list:
            if "Iteration_" in dir:
                ac_flag=True
                i = int(dir.replace("Iteration_", ""))
                if i > 2:
                    shutil.rmtree(os.path.join(target_path, dir))
        if ac_flag:
            iter_structure_path = os.path.join(CONTENT_PATH, "iteration_structure.json")
            with open(iter_structure_path, "r") as f:
                i_s = json.load(f)
            new_is = list()
            for item in i_s:
                value = item["value"]
                if value < 3:
                    new_is.append(item)
            with open(iter_structure_path, "w") as f:
                json.dump(new_is, f)
            print("Successfully remove cache data!")


#mock
@app.route('/login', methods=["POST"])
@cross_origin()
def login():
    data = request.get_json()
    username = data["username"]
    password = data["password"]
    content_path = data["content_path"]

    # Verify username and password
    # if pass return normal_content_path and anormaly_content_path
    if username == 'admin-e' and password == '123qwe': 
        # con_paths = {"normal_content_path": content_path,"unormaly_content_path":content_path}
        # clear_cache(con_paths)
        return make_response(jsonify({"normal_content_path": content_path, "unormaly_content_path": content_path}), 200)
    else:
        return make_response(jsonify({"message":"username or password is wrong"}), 200)

@app.route('/boundingbox_record', methods=["POST"])
@cross_origin()
def record_bb():
    data = request.get_json()
    username = data['username']
    add_line(API_result_path,['boundingbox', username])  
    return make_response(jsonify({}), 200)
  
@app.route('/all_result_list', methods=["POST"])
@cross_origin()
def get_res():
    data = request.get_json()
    CONTENT_PATH = os.path.normpath(data['content_path'])
    # iteration_s = data["iteration_start"]
    # iteration_e = data["iteration_end"]
    predicates = dict() # placeholder

    results = dict()
    imglist = dict()
    gridlist = dict()

    sys.path.append(CONTENT_PATH)

    username = data["username"]

    from config import config
    EPOCH_START = config["EPOCH_START"]
    EPOCH_PERIOD = config["EPOCH_PERIOD"]
    EPOCH_END = config["EPOCH_END"]

    # TODO Interval to be decided
    epoch_num = (EPOCH_END - EPOCH_START)// EPOCH_PERIOD + 1

    for i in range(1, epoch_num+1, 1):
        EPOCH = (i-1)*EPOCH_PERIOD + EPOCH_START

        timevis = initialize_backend(CONTENT_PATH)

        # detect whether we have query before
        fname = "Epoch" if timevis.data_provider.mode == "normal" or timevis.data_provider.mode == "abnormal" else "Iteration"
        bgimg_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "bgimg.png")
        embedding_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "embedding.npy")
        grid_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "grid.pkl")
        if os.path.exists(bgimg_path) and os.path.exists(embedding_path) and os.path.exists(grid_path):
            path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH))
            result_path = os.path.join(path,"embedding.npy")
            results[str(i)] = np.load(result_path).tolist()
            with open(os.path.join(path, "grid.pkl"), "rb") as f:
                grid = pickle.load(f)
            gridlist[str(i)] = grid
        else:
            embedding_2d, grid, _, _, _, _, _, _, _, _, _, _, _ = update_epoch_projection(timevis, EPOCH, predicates)
            results[str(i)] = embedding_2d
            gridlist[str(i)] = grid
        # read background img
        with open(bgimg_path, 'rb') as img_f:
            img_stream = img_f.read()
        img_stream = base64.b64encode(img_stream).decode()
        imglist[str(i)] = 'data:image/png;base64,' + img_stream
        # imglist[str(i)] = "http://{}{}".format(ip_adress, bgimg_path)
    sys.path.remove(CONTENT_PATH)
    
    del config
    gc.collect()  

    add_line(API_result_path,['animation', username])  
    return make_response(jsonify({"results":results,"bgimgList":imglist, "grid": gridlist}), 200)

@app.route('/get_itertaion_structure', methods=["POST", "GET"])
@cross_origin()
def get_tree():
    CONTENT_PATH = request.args.get("path")
    res_json_path = os.path.join(CONTENT_PATH, "iteration_structure.json")
    #mock
    # res_json_path = os.path.join("./iteration_structure.json")
    with open(res_json_path,encoding='utf8')as fp:
        json_data = json.load(fp)
    return make_response(jsonify({"structure":json_data}), 200)

def check_port_inuse(port, host):
    try:
        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        s.settimeout(1)
        s.connect((host, port))
        return True
    except socket.error:
        return False
    finally:
        if s:
            s.close()

if __name__ == "__main__":
    import socket
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    # with open('config.json', 'r') as f:
    #     config = json.load(f)
    #     ip_address = config["ServerIP"]
    #     port = config["ServerPort"]
    port = 5000
    while check_port_inuse(port, ip_address):
        port = port + 1
    app.run(host=ip_address, port=int(port))