File size: 19,221 Bytes
d5fa9ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import torch
import torch.nn as nn
from prettytable import PrettyTable
from torch.nn.modules.activation import Tanh
import copy
import logging
logger = logging.getLogger(__name__)
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer)
def whitening_torch_final(embeddings):
mu = torch.mean(embeddings, dim=0, keepdim=True)
cov = torch.mm((embeddings - mu).t(), embeddings - mu)
u, s, vt = torch.svd(cov)
W = torch.mm(u, torch.diag(1/torch.sqrt(s)))
embeddings = torch.mm(embeddings - mu, W)
return embeddings
class BaseModel(nn.Module):
def __init__(self, ):
super().__init__()
def model_parameters(self):
table = PrettyTable()
table.field_names = ["Layer Name", "Output Shape", "Param #"]
table.align["Layer Name"] = "l"
table.align["Output Shape"] = "r"
table.align["Param #"] = "r"
for name, parameters in self.named_parameters():
if parameters.requires_grad:
table.add_row([name, str(list(parameters.shape)), parameters.numel()])
return table
class Model(BaseModel):
def __init__(self, encoder):
super(Model, self).__init__()
self.encoder = encoder
def forward(self, code_inputs=None, nl_inputs=None):
# code_inputs [bs, seq]
if code_inputs is not None:
outputs = self.encoder(code_inputs,attention_mask=code_inputs.ne(1))[0] #[bs, seq_len, dim]
outputs = (outputs*code_inputs.ne(1)[:,:,None]).sum(1)/code_inputs.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
return torch.nn.functional.normalize(outputs, p=2, dim=1)
else:
outputs = self.encoder(nl_inputs,attention_mask=nl_inputs.ne(1))[0]
outputs = (outputs*nl_inputs.ne(1)[:,:,None]).sum(1)/nl_inputs.ne(1).sum(-1)[:,None]
return torch.nn.functional.normalize(outputs, p=2, dim=1)
class Multi_Loss_CoCoSoDa( BaseModel):
def __init__(self, base_encoder, args, mlp=False):
super(Multi_Loss_CoCoSoDa, self).__init__()
self.K = args.moco_k
self.m = args.moco_m
self.T = args.moco_t
dim= args.moco_dim
# create the encoders
# num_classes is the output fc dimension
self.code_encoder_q = base_encoder
self.code_encoder_k = copy.deepcopy(base_encoder)
self.nl_encoder_q = base_encoder
# self.nl_encoder_q = RobertaModel.from_pretrained("roberta-base")
self.nl_encoder_k = copy.deepcopy(self.nl_encoder_q)
self.mlp = mlp
self.time_score= args.time_score
self.do_whitening = args.do_whitening
self.do_ineer_loss = args.do_ineer_loss
self.agg_way = args.agg_way
self.args = args
for param_q, param_k in zip(self.code_encoder_q.parameters(), self.code_encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
for param_q, param_k in zip(self.nl_encoder_q.parameters(), self.nl_encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the code queue
torch.manual_seed(3047)
torch.cuda.manual_seed(3047)
self.register_buffer("code_queue", torch.randn(dim,self.K ))
self.code_queue = nn.functional.normalize(self.code_queue, dim=0)
self.register_buffer("code_queue_ptr", torch.zeros(1, dtype=torch.long))
# create the masked code queue
self.register_buffer("masked_code_queue", torch.randn(dim, self.K ))
self.masked_code_queue = nn.functional.normalize(self.masked_code_queue, dim=0)
self.register_buffer("masked_code_queue_ptr", torch.zeros(1, dtype=torch.long))
# create the nl queue
self.register_buffer("nl_queue", torch.randn(dim, self.K ))
self.nl_queue = nn.functional.normalize(self.nl_queue, dim=0)
self.register_buffer("nl_queue_ptr", torch.zeros(1, dtype=torch.long))
# create the masked nl queue
self.register_buffer("masked_nl_queue", torch.randn(dim, self.K ))
self.masked_nl_queue= nn.functional.normalize(self.masked_nl_queue, dim=0)
self.register_buffer("masked_nl_queue_ptr", torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
% key encoder的Momentum update
"""
for param_q, param_k in zip(self.code_encoder_q.parameters(), self.code_encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
for param_q, param_k in zip(self.nl_encoder_q.parameters(), self.nl_encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
if self.mlp:
for param_q, param_k in zip(self.code_encoder_q_fc.parameters(), self.code_encoder_k_fc.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
for param_q, param_k in zip(self.nl_encoder_q_fc.parameters(), self.nl_encoder_k_fc.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys, option='code'):
# gather keys before updating queue
# keys = concat_all_gather(keys)
batch_size = keys.shape[0]
if option == 'code':
code_ptr = int(self.code_queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
try:
self.code_queue[:, code_ptr:code_ptr + batch_size] = keys.T
except:
print(code_ptr)
print(batch_size)
print(keys.shape)
exit(111)
code_ptr = (code_ptr + batch_size) % self.K # move pointer ptr->pointer
self.code_queue_ptr[0] = code_ptr
elif option == 'masked_code':
masked_code_ptr = int(self.masked_code_queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
try:
self.masked_code_queue[:, masked_code_ptr:masked_code_ptr + batch_size] = keys.T
except:
print(masked_code_ptr)
print(batch_size)
print(keys.shape)
exit(111)
masked_code_ptr = (masked_code_ptr + batch_size) % self.K # move pointer ptr->pointer
self.masked_code_queue_ptr[0] = masked_code_ptr
elif option == 'nl':
nl_ptr = int(self.nl_queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.nl_queue[:, nl_ptr:nl_ptr + batch_size] = keys.T
nl_ptr = (nl_ptr + batch_size) % self.K # move pointer ptr->pointer
self.nl_queue_ptr[0] = nl_ptr
elif option == 'masked_nl':
masked_nl_ptr = int(self.masked_nl_queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.masked_nl_queue[:, masked_nl_ptr:masked_nl_ptr + batch_size] = keys.T
masked_nl_ptr = (masked_nl_ptr + batch_size) % self.K # move pointer ptr->pointer
self.masked_nl_queue_ptr[0] = masked_nl_ptr
def forward(self, source_code_q, source_code_k, nl_q,nl_k):
"""
Input:
im_q: a batch of query images
im_k: a batch of key images
Output:
logits, targets
"""
if not self.args.do_multi_lang_continue_pre_train:
# logger.info(".do_multi_lang_continue_pre_train")
outputs = self.code_encoder_q(source_code_q, attention_mask=source_code_q.ne(1))[0]
code_q = (outputs*source_code_q.ne(1)[:,:,None]).sum(1)/source_code_q.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
code_q = torch.nn.functional.normalize(code_q, p=2, dim=1)
# compute query features for nl
outputs= self.nl_encoder_q(nl_q, attention_mask=nl_q.ne(1))[0] # queries: NxC bs*feature_dim
nl_q = (outputs*nl_q.ne(1)[:,:,None]).sum(1)/nl_q.ne(1).sum(-1)[:,None]
nl_q = torch.nn.functional.normalize(nl_q, p=2, dim=1)
code2nl_logits = torch.einsum("ab,cb->ac", code_q,nl_q )
# loss = self.loss_fct(scores*20, torch.arange(code_inputs.size(0), device=scores.device))
code2nl_logits /= self.T
# label
code2nl_label = torch.arange(code2nl_logits.size(0), device=code2nl_logits.device)
return code2nl_logits,code2nl_label, None, None
if self.agg_way == "avg":
# compute query features for source code
outputs = self.code_encoder_q(source_code_q, attention_mask=source_code_q.ne(1))[0]
code_q = (outputs*source_code_q.ne(1)[:,:,None]).sum(1)/source_code_q.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
code_q = torch.nn.functional.normalize(code_q, p=2, dim=1)
# compute query features for nl
outputs= self.nl_encoder_q(nl_q, attention_mask=nl_q.ne(1))[0] # queries: NxC bs*feature_dim
nl_q = (outputs*nl_q.ne(1)[:,:,None]).sum(1)/nl_q.ne(1).sum(-1)[:,None]
nl_q = torch.nn.functional.normalize(nl_q, p=2, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
# im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
# masked code
outputs = self.code_encoder_k(source_code_k, attention_mask=source_code_k.ne(1))[0] # keys: NxC
code_k = (outputs*source_code_k.ne(1)[:,:,None]).sum(1)/source_code_k.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
code_k = torch.nn.functional.normalize( code_k, p=2, dim=1)
# masked nl
outputs = self.nl_encoder_k(nl_k, attention_mask=nl_k.ne(1))[0] # keys: bs*dim
nl_k = (outputs*nl_k.ne(1)[:,:,None]).sum(1)/nl_k.ne(1).sum(-1)[:,None]
nl_k = torch.nn.functional.normalize(nl_k, p=2, dim=1)
elif self.agg_way == "cls_pooler":
# logger.info(self.agg_way )
# compute query features for source code
outputs = self.code_encoder_q(source_code_q, attention_mask=source_code_q.ne(1))[1]
code_q = torch.nn.functional.normalize(code_q, p=2, dim=1)
# compute query features for nl
outputs= self.nl_encoder_q(nl_q, attention_mask=nl_q.ne(1))[1] # queries: NxC bs*feature_dim
nl_q = torch.nn.functional.normalize(nl_q, p=2, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
# im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
# masked code
outputs = self.code_encoder_k(source_code_k, attention_mask=source_code_k.ne(1))[1] # keys: NxC
code_k = torch.nn.functional.normalize( code_k, p=2, dim=1)
# masked nl
outputs = self.nl_encoder_k(nl_k, attention_mask=nl_k.ne(1))[1] # keys: bs*dim
nl_k = torch.nn.functional.normalize(nl_k, p=2, dim=1)
elif self.agg_way == "avg_cls_pooler":
# logger.info(self.agg_way )
outputs = self.code_encoder_q(source_code_q, attention_mask=source_code_q.ne(1))
code_q_cls = outputs[1]
outputs = outputs[0]
code_q_avg = (outputs*source_code_q.ne(1)[:,:,None]).sum(1)/source_code_q.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
code_q = code_q_cls + code_q_avg
code_q = torch.nn.functional.normalize(code_q, p=2, dim=1)
# compute query features for nl
outputs= self.nl_encoder_q(nl_q, attention_mask=nl_q.ne(1))
nl_q_cls = outputs[1]
outputs= outputs[0] # queries: NxC bs*feature_dim
nl_q_avg = (outputs*nl_q.ne(1)[:,:,None]).sum(1)/nl_q.ne(1).sum(-1)[:,None]
nl_q = nl_q_avg + nl_q_cls
nl_q = torch.nn.functional.normalize(nl_q, p=2, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
# im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
# masked code
outputs = self.code_encoder_k(source_code_k, attention_mask=source_code_k.ne(1))
code_k_cls = outputs[1] # keys: NxC
outputs = outputs[0]
code_k_avg = (outputs*source_code_k.ne(1)[:,:,None]).sum(1)/source_code_k.ne(1).sum(-1)[:,None] # None作为ndarray或tensor的索引作用是增加维度,
code_k = code_k_cls + code_k_avg
code_k = torch.nn.functional.normalize( code_k, p=2, dim=1)
# masked nl
outputs = self.nl_encoder_k(nl_k, attention_mask=nl_k.ne(1))
nl_k_cls = outputs[1] # keys: bs*dim
outputs = outputs[0]
nl_k_avg = (outputs*nl_k.ne(1)[:,:,None]).sum(1)/nl_k.ne(1).sum(-1)[:,None]
nl_k = nl_k_cls + nl_k_avg
nl_k = torch.nn.functional.normalize(nl_k, p=2, dim=1)
# ## do_whitening
# if self.do_whitening:
# code_q = whitening_torch_final(code_q)
# code_k = whitening_torch_final(code_k)
# nl_q = whitening_torch_final(nl_q)
# nl_k = whitening_torch_final(nl_k)
## code vs nl
code2nl_pos = torch.einsum('nc,bc->nb', [code_q, nl_q])
# negative logits: NxK
code2nl_neg = torch.einsum('nc,ck->nk', [code_q, self.nl_queue.clone().detach()])
# logits: Nx(n+K)
code2nl_logits = torch.cat([self.time_score*code2nl_pos, code2nl_neg], dim=1)
# apply temperature
code2nl_logits /= self.T
# label
code2nl_label = torch.arange(code2nl_logits.size(0), device=code2nl_logits.device)
## code vs masked nl
code2maskednl_pos = torch.einsum('nc,bc->nb', [code_q, nl_k])
# negative logits: NxK
code2maskednl_neg = torch.einsum('nc,ck->nk', [code_q, self.masked_nl_queue.clone().detach()])
# logits: Nx(n+K)
code2maskednl_logits = torch.cat([self.time_score*code2maskednl_pos, code2maskednl_neg], dim=1)
# apply temperature
code2maskednl_logits /= self.T
# label
code2maskednl_label = torch.arange(code2maskednl_logits.size(0), device=code2maskednl_logits.device)
## nl vs code
# nl2code_pos = torch.einsum('nc,nc->n', [nl_q, code_k]).unsqueeze(-1)
nl2code_pos = torch.einsum('nc,bc->nb', [nl_q, code_q])
# negative logits: bsxK
nl2code_neg = torch.einsum('nc,ck->nk', [nl_q, self.code_queue.clone().detach()])
# nl2code_logits: bsx(n+K)
nl2code_logits = torch.cat([self.time_score*nl2code_pos, nl2code_neg], dim=1)
# apply temperature
nl2code_logits /= self.T
# label
nl2code_label = torch.arange(nl2code_logits.size(0), device=nl2code_logits.device)
## nl vs masked code
# nl2code_pos = torch.einsum('nc,nc->n', [nl_q, code_k]).unsqueeze(-1)
nl2maskedcode_pos = torch.einsum('nc,bc->nb', [nl_q, code_k])
# negative logits: bsxK
nl2maskedcode_neg = torch.einsum('nc,ck->nk', [nl_q, self.masked_code_queue.clone().detach()])
# nl2code_logits: bsx(n+K)
nl2maskedcode_logits = torch.cat([self.time_score*nl2maskedcode_pos, nl2maskedcode_neg], dim=1)
# apply temperature
nl2maskedcode_logits /= self.T
# label
nl2maskedcode_label = torch.arange(nl2maskedcode_logits.size(0), device=nl2maskedcode_logits.device)
#logit 4*bsx(1+K)
inter_logits = torch.cat((code2nl_logits, code2maskednl_logits, nl2code_logits ,nl2maskedcode_logits ), dim=0)
# labels: positive key indicators
# inter_labels = torch.zeros(inter_logits.shape[0], dtype=torch.long).cuda()
inter_labels = torch.cat((code2nl_label, code2maskednl_label, nl2code_label, nl2maskedcode_label), dim=0)
if self.do_ineer_loss:
# logger.info("do_ineer_loss")
## code vs masked code
code2maskedcode_pos = torch.einsum('nc,bc->nb', [code_q, code_k])
# negative logits: NxK
code2maskedcode_neg = torch.einsum('nc,ck->nk', [code_q, self.masked_code_queue.clone().detach()])
# logits: Nx(n+K)
code2maskedcode_logits = torch.cat([self.time_score*code2maskedcode_pos, code2maskedcode_neg], dim=1)
# apply temperature
code2maskedcode_logits /= self.T
# label
code2maskedcode_label = torch.arange(code2maskedcode_logits.size(0), device=code2maskedcode_logits.device)
## nl vs masked nl
# nl2code_pos = torch.einsum('nc,nc->n', [nl_q, code_k]).unsqueeze(-1)
nl2maskednl_pos = torch.einsum('nc,bc->nb', [nl_q, nl_k])
# negative logits: bsxK
nl2maskednl_neg = torch.einsum('nc,ck->nk', [nl_q, self.masked_nl_queue.clone().detach()])
# nl2code_logits: bsx(n+K)
nl2maskednl_logits = torch.cat([self.time_score*nl2maskednl_pos, nl2maskednl_neg], dim=1)
# apply temperature
nl2maskednl_logits /= self.T
# label
nl2maskednl_label = torch.arange(nl2maskednl_logits.size(0), device=nl2maskednl_logits.device)
#logit 6*bsx(1+K)
inter_logits = torch.cat((inter_logits, code2maskedcode_logits, nl2maskednl_logits), dim=0)
# labels: positive key indicators
# inter_labels = torch.zeros(inter_logits.shape[0], dtype=torch.long).cuda()
inter_labels = torch.cat(( inter_labels, code2maskedcode_label, nl2maskednl_label ), dim=0)
# dequeue and enqueue
self._dequeue_and_enqueue(code_q, option='code')
self._dequeue_and_enqueue(nl_q, option='nl')
self._dequeue_and_enqueue(code_k, option='masked_code')
self._dequeue_and_enqueue(nl_k, option='masked_nl')
return inter_logits, inter_labels, code_q, nl_q
|