File size: 6,635 Bytes
f291f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
explore and expliot 

"""
########################################################################################################################
#                                                          IMPORT                                                      #
########################################################################################################################
import torch
import sys
import os
import json
import numpy as np
sys.path.append('..')

from singleVis.SingleVisualizationModel import VisModel

from singleVis.data import NormalDataProvider

from singleVis.projector import DVIProjector
from singleVis.eval.evaluator import Evaluator

VIS_METHOD = "DVI" # DeepVisualInsight

########################################################################################################################
#                                                     LOAD PARAMETERS                                                  #
########################################################################################################################
import argparse
parser = argparse.ArgumentParser(description='Process hyperparameters...')

parser.add_argument('--content_path', type=str)
parser.add_argument('--epoch', type=int)
parser.add_argument('--base', type=str)

parser.add_argument('--name', type=str)



args = parser.parse_args()
epoch = args.epoch
base_model = args.base
save_name = args.name

CONTENT_PATH= args.content_path
print("CONTENT_PATH",CONTENT_PATH)


sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
    config = json.load(f)
config = config[VIS_METHOD]

# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) 
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")

SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]

# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]

# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]

VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]



# VIS_MODEL_NAME = 'dvi_grid'

# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")

import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))

# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)


# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)

# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)    

########################################################################################################################
#                                                      VISUALIZATION                                                   #
########################################################################################################################

from singleVis.visualizer import visualizer

vis = visualizer(data_provider, projector, 200, "tab10")
save_dir = os.path.join(data_provider.content_path, "imgptDVI")
if not os.path.exists(save_dir):
    os.mkdir(save_dir)





from singleVis.SingleVisualizationModel import VisModel
from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructorForGrid

pre_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
file_path = os.path.join(CONTENT_PATH, "Model", "Epoch_{}".format(epoch), "{}.pth".format(base_model))
save_model = torch.load(file_path, map_location="cpu")
pre_model.load_state_dict(save_model["state_dict"])
pre_model.to(DEVICE)

"""get high dimensional grid, 2d grid embedding and border vector"""

projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=base_model, device=DEVICE)  
em1 = projector.batch_project(epoch, np.concatenate((data_provider.train_representation(epoch),data_provider.border_representation(epoch) )))

em1_rev = projector.batch_inverse(epoch, em1)

vis = visualizer(data_provider, projector, 200, "tab10")
grid_high, grid_emd ,border = vis.get_epoch_decision_view(epoch,400,None, True)
train_data_embedding = projector.batch_project(epoch, data_provider.train_representation(epoch))
from sklearn.neighbors import NearestNeighbors
import numpy as np

threshold = 2  # 阈值
# 使用 train_data_embedding 初始化 NearestNeighbors 对象
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train_data_embedding)
# 对于 grid_emd 中的每一个点,找到 train_data_embedding 中离它最近的点
distances, indices = nbrs.kneighbors(grid_emd)
mask = distances.ravel() < threshold
###### grid二维所有距离training data小于阈值的sample
selected_indices = np.arange(grid_emd.shape[0])[mask]
###### grid二维所有被放在边界的点
border_indices = np.arange(grid_emd.shape[0])[border==1]

union_indices = np.union1d(selected_indices, border_indices)


########## import skeleton

from trustVis.skeleton_generator import CenterSkeletonGenerator
skeleton_generator = CenterSkeletonGenerator(data_provider,epoch,3,3,100)
high_bom = skeleton_generator.center_skeleton_genertaion()


##########  FIND ERROR  2D:grid_emd[selected_indices] INVERSE_HIGH: grid_high[selected_indices]
# grid_emd[selected_indices], grid_high[selected_indices] 只关心离training data足够近的grid
new_grid_emd = projector.batch_project( epoch, grid_high[selected_indices])
new_inv = projector.batch_inverse( epoch, new_grid_emd)

#### error condition: 
# 1. || new_grid_emd[selected_indices] -  grid_emd[selected_indices]) > a  
# 2. || pred(grid_high[selected_indices]) - pred(new_inv) || > b